Louisiana Coastal Area
Mississippi River
Hydrodynamic and Delta Management Study

Cherie Price - USACE
Brian Vosburg - CPRA
Presentation Outline

- MS River Hydrodynamic and Delta Management Study Overview
- Louisiana 2012 Coastal Master Plan
- Timelines
- River Efforts
- Basin Efforts
- Expected Outcomes
- Collaboration Opportunities
- LCA Website
- Contact Information
Study Overview

- MRHDM combines the first two large-scale, long-term studies
 - “Mississippi River Hydrodynamic Study”
 - “Mississippi River Delta Management Study”
 - Assessment of fundamental changes to coast and river management
 - Investigation of significant potential for achieving restoration and management objectives

- Cost-Share Agreement signed August 24, 2011
 - 5 years
 - $25.3 M study effort
Study Overview

- Assess the current and future operation of the Mississippi River & Tributaries system
 - Ecosystem restoration
 - Flood risk reduction
 - Navigation

- Assess cumulative river impacts of multiple restoration features
Existing and Proposed Diversions/Spillways along the Lower Mississippi River

- MR Reintroduction into Bayou La Fourche
- LCA Blind River
- River Reintroduction into Maurepas Swamp
- Bonnet Carre Spillway
- Davis Pond Freshwater Diversion
- Bertrandville Siphon
- Naomi Siphon
- LCA Myrtle Grove
- West Point A La Hache Siphon
- Bohemia Mississippi River Reintroduction
- Bayou Lamoque Freshwater Diversion
- Violet Siphon
- Caernarvon Freshwater Diversion
- White Ditch Ressurection and Outfall Management
- LCA Medium Diversion at White Ditch (Phoenix)
- Delta Building Diversion N. of Fort St. Philip
- Benney's Bay Diversion
- Delta Wide Crevasses
- Spanish Pass Diversion
- Delta Building Diversion N. of Four St. Philip
- Old River Control Structure/Morgana Floodway
- Channel Armor Gap Crevasse

Features:
- Diversions:
 - Green: Constructed
 - Yellow: Engineering & Design (CMPPRA or CIAP)
 - Blue: Feasibility Study (Civil Works)

Locations of features are generalized and intended for informational purposes; individual sites have not been ground truthed or verified for accuracy. Features are many features on the Lower Mississippi River. Additional features may exist, but are not shown on this map. The map is a working map. Please contact Travis Crew at USACE-MVN for changes or corrections.

US Army Corps of Engineers
New Orleans District
Study Overview

Identify and evaluate features that will promote land building/retention/sustainability and support management of multiple National and local interests in delta areas

► Analyze large river diversions (>50,000 cfs)
► Consider navigational interests, dredging requirements
► Other restoration measures, e.g. outfall management measures, dedicated dredging, etc.
High subsidence rate + sea-level rise makes wetlands more vulnerable to submergence and erosion.
Mississippi River Suspended Sand Budget 2008-2010

100% Tarbert Landing
Above Baton Rouge
61% overbank and channel storage

25% Belle Chasse
14% Below Baton Rouge channel storage

West Bank Passes 2%

HoP 3%

South Pass 0.3%

0.3% Pass a Loutre

12% Channel Storage

5% East Bank Passes

SW Pass 2%
Potentially Impacted Oyster Leases in Caernarvon Project Area
2012 Master Plan evaluated nearly 400 projects across the coast
Land Building Experiments

Potential Land Area Change Over Next 50 Years
Moderate Scenario

- Maximize Land
- Multiple Small Diversions
- No Diversions
- Future Without Action

Total Land in Coastal Study Area (Square Miles)

<table>
<thead>
<tr>
<th>Year</th>
<th>Maximize Land</th>
<th>Multiple Small Diversions</th>
<th>No Diversions</th>
<th>Future Without Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>5000</td>
<td>4750</td>
<td>4500</td>
<td>4250</td>
</tr>
<tr>
<td>2021</td>
<td>4750</td>
<td>4500</td>
<td>4250</td>
<td>4000</td>
</tr>
<tr>
<td>2031</td>
<td>4500</td>
<td>4250</td>
<td>4000</td>
<td>3750</td>
</tr>
<tr>
<td>2041</td>
<td>4250</td>
<td>4000</td>
<td>3750</td>
<td>3500</td>
</tr>
<tr>
<td>2051</td>
<td>4000</td>
<td>3750</td>
<td>3500</td>
<td>3250</td>
</tr>
<tr>
<td>2061</td>
<td>3750</td>
<td>3500</td>
<td>3250</td>
<td>3000</td>
</tr>
</tbody>
</table>
Timelines

- Feasibility Cost Share Agreement - August 24, 2011
- Public Meetings - April 2012
- River Work Plans Complete/Notice to Proceed – April/May 2012
- Basin Work Plans Complete/Notice to Proceed – December 2012
- Interim 1D River Modeling and Geomorphic Analysis Results – April 2013
- Land Building Estimates – November 2014
- Tentatively Selected Plan – February 2015
- Chief of Engineer’s Report – August 2016
River/Basin Work Efforts

- Data Collection and Analysis
- Data Management
- Geomorphic Assessment - River
- One-Dimensional Modeling - River
- Multi-dimensional Modeling
- Definition of Metrics for Assessing Model Predictive Skill
- Future Without Project Landscape Assessment - Basin
- Land Building Modeling - Basin
- Ecological Modeling – Basin

** Each team is co-lead by a State and Federal representative
River Work Efforts
The overall objective is to utilize all available data to document historical trends in hydrology, sedimentation and channel geometry in the lower Mississippi River and to summarize the local changes observed at locations where repetitive datasets exist and at key reaches. The assessment will focus on but not be limited to the time period 1960 to the present.
Geomorphic Assessment

- Geometric analysis of historic and current bathymetric surveys
- Specific gage analysis – stage elevation and discharge
- Dredge records analysis
- Sediment data analysis
- Natural and Anthropogenic events – Timeline analysis
Data Collection and Analysis

The overall objective is to utilize existing data and to collect and analyze new data to enhance the understanding of hydrodynamic and sediment processes in the lower MS River in order to support numerical modeling efforts.
Data Collection and Analysis

- Longitudinal, boat based studies of hydrodynamics, suspended sediment and bed load flux at high and low water discharge events
- Reach scale, site specific, boat based studies of hydrodynamics, suspended sediment and bed load flux over a range of water discharges
- Boat based studies of salt-wedge dynamics in the estuarine reach during low water discharge periods
- Stationary platform data collection of key parameters including stage elevation, turbidity, salinity and water discharge
One-Dimensional Modeling

- Overall objective is to develop a broadly accepted 1D modeling system that will be able to address the long term (decadal) effects of management decisions on the hydrodynamics and sediment transport dynamics in the lower Mississippi River from Vicksburg to the Gulf of Mexico.
One-Dimensional Modeling

► Task 1: Initial HEC-6T Demonstration and Application
 ▶ Expansion of Model Domain
 ▶ Update Geo-referenced Cross-section Databases
 ▶ Model Validation
 ▶ Scenario Testing

► Task 2: HEC-RAS Model Development
 ▶ Model Development
 ▶ Model Validation
 ▶ Scenario Testing
Multi-dimensional Modeling

- Overall objective is to setup and apply a suite of multi-dimensional modeling tools to develop an understanding of, and accurately simulate the hydrodynamic, salinity, temperature and sediment dynamics along critical reaches of the Lower Mississippi River, over shorter time scales than the one-dimensional models.
Multi-dimensional Modeling

- ADaptive Hydraulics (ADH) – with SEDLIB
- FLOW-3D
- DELFT-3D
- FVCOM-3D
Basin Work Efforts
Basin Dynamics

- **Data Collection**
 - Channel/Marsh Topography/Bathymetry
 - Water velocity, discharge and stage
 - Marsh salinities, and tidal salinities
 - Suspended Sediment
 - Bulk Densities/Root Biomass Measurements
 - Habitat Suitability Indices

- **Future Without Project Landscape Assessment**
 - Land change imagery assessment
 - Subsidence and accretion methodologies applied
Basin Dynamics

- Hydrodynamic, Salinity and Sediment Transport Modeling
 - ADH
 - DELFT3D
 - RMA

- Land Building Modeling
 - SAND - Desktop Excel Model
 - DELFT3D – Geomorphology module

- Ecological Modeling – Habitat Switching, Fisheries Trade Offs
 - CASM
Definition of Metrics for Assessing Model Predictive Skill

► Overall objective is to develop metrics to assess the predictive performance of the one and multi-dimensional models applied in this study. Separate metrics will be developed for each model type used in the study. The metrics will serve as a quantitative and unified tool to assess the models predictive performance.

► Preliminary Report – outline of preliminary design of metrics
 ▶ 1D Numerical Models
 ▶ 2D Numerical Models
 ▶ 3D Numerical Models
 ▶ Workshop
Data Management

► All data products generated by the project will be maintained on existing State and Federal systems and archived for future use by Federal, State and outside Technical entities.

► Relevant data will be identified and integrated into data visualization products such as web maps, web charts, and/or 2D-3D visual representations. These products will be made available through State and Federal data portals.
Expected Outcomes

- Quantities of existing and future river water and sediment available to support sustainable restoration while maintaining navigation and flood risk reduction.

- Programmatic modeling and tools to support the development and evolution of a decision making framework for the river and surrounding basins.

- Forecast long-term sustainability of existing river related systems

- Analysis of river management options and tradeoffs to various areas of Federal and local interest

- System wide plan to target sustainable net positive elevation change in targeted receiving basins.
Collaboration Opportunities

- Tide gages and Gulf-wide fisheries assessment
- Gulf Coast Regional Sediment Management
- Water quality data and assessment (hypoxia)
- Ecological data and assessment
 - Fisheries impacts to freshening estuaries
- Long-term Maintenance and application of Mississippi River models
- Long-term data collection, including permanent water and sediment gages on the Mississippi River, land change assessment, subsidence and bathymetric measurements
The Mississippi River Hydrodynamic and Delta Management (MRHDM) Study is the first large-scale, long-term restoration assessment investigated under the LCA Program. This study will identify and evaluate a combination of large-scale management and restoration features to address the long-term sustainability of the lower Mississippi River Deltaic Plain, as authorized under Section 7003 of the Water Resource Development Act (WRDA) 2007. The MRHDM Study area covers the lower Mississippi River and the surrounding deltaic regions. The hydrodynamic study effort will focus on the Mississippi River, while the delta management study effort will focus on the adjacent basins.

Submit a Comment/Question
Contact Information

Cherie Price
504-862-2737
cherie.price@us.army.mil

Brian Vosburg
225-342-4744
Brian.vosburg@la.gov
Questions?