Predicting the Impacts of Saltwater Intrusion on Ecosystem Dynamics in Tidal Freshwater Floodplain Forests in Coastal Georgia

Ellen R. Herbert1, John M. Marton1,5, Mihee Jun2, Erika R. Elswick3, and Christopher B. Craft1

1 School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
2 Institute of Health and Environment, Gyeongsangnam-do, Republic of Korea
3 Department of Geological Sciences, Indiana University, Bloomington, Indiana, USA
5 Louisiana Marine Consortium, Chauvain, Louisiana, USA
Outline

• Overview of *tidal* freshwater floodplain *forests* and global change

• Changes in cycling of:
 • Carbon (C) & Sulfur (S)
 • Nitrogen (N)
 • Phosphorus (P)

• Scaling up using SLAMM

• Discussion & Conclusions

• Unknowns and future work
Tidal Forests

• Tidal pulsing with freshwater
• Storm surge abatement and water storage
• Habitat and biodiversity
• C sequestration in woody biomass and soils
• Water quality amelioration
• GHG production: CO$_2$, CH$_4$ & N$_2$O
Tidal Forests and Global Change

• SLR results in increased inundation rates

• Saltwater intrusion results from combination of:
 • Altered precipitation regimes
 • Anthropogenic alteration of freshwater flow
 • SLR
Global Change: Consequences

• Increased inundation rates = increased duration of anaerobic conditions

• Increased salinity
 • Introduce sulfate (SO$_4^{2-}$) ion
 • Methanogenesis \rightarrow sulfate reduction
 • Accelerate decomposition \rightarrow subsidence?
 • Release P

• Change ionic strength
SE US Coast

Study Area

- S. Newport
- Altamaha River
- Sapelo Is.
Objectives:

- How do salinity and hydrology impact the decomposition of the roots of bald cypress (*Taxodium distichum*)?

Methods:

Healthy tidal forest Saltwater intrusion Brackish marsh
% Mass Remaining vs. Time (d) for different conditions:
- TFF Levee
- TFF Plain
- SN Levee
- SN Plain
- BR Levee
- BR Plain
C & S Cycling: Saltwater and GHGs

Objectives

• How does simulated saltwater intrusion impact:
 – Greenhouse gas production?
 – Sulfur cycling?
 – Denitrification?

Methods:

• Altamaha, Satilla, and Ogeechee Rivers
• Anaerobic bottle incubations at salinity of 0, 2, 5
 • Acetylene block for denitrification
• Extract acid volatile and chromium reducible sulfur

Marton et al. (2012) *Wetlands*
Evidence of Increased S Reduction

- Total reduced inorganic S increased in Altamaha and Ogeechee with salinity, indicating increased sulfate reduction.
- Ogeechee had much higher initial S in soil and water.
CO₂ Production from Sulfate Reduction

- Sulfate reduction greater than 100% of CO₂ production?
Ambient N_2O Production

- Altamaha
- Ogeechee
- Satilla

$\text{ng N}_2\text{O} / g \text{ soil} / hr$

A

B

B

0 ppt

2 ppt

5 ppt
Ambient Denitrification

- **Altamaha**
- **Ogeechee**
- **Satilla**

<table>
<thead>
<tr>
<th>Condition</th>
<th>Altamaha</th>
<th>Ogeechee</th>
<th>Satilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ppt</td>
<td>0.00</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>2 ppt</td>
<td>0.30</td>
<td>0.20</td>
<td>0.40</td>
</tr>
<tr>
<td>5 ppt</td>
<td>0.30</td>
<td>0.40</td>
<td>0.30</td>
</tr>
</tbody>
</table>

The graph shows the concentration of N$_2$O in ng/g soil/hr across different conditions and locations.
Objectives:

- Are tidal forest soils sources or sinks for inorganic N&P?
- How do increased salinity and inundation impact this?

Methods:

Sorption/Desorption:
- Altamaha, Ogeechee, Satilla, S. Newport
- 5 tidal cycles
- $\Delta [NH_4-N] \& [PO_4-P]$

Salinity and Inundation:
- Salinity (0, 2, 5) * Inundation (5, 10 cm)

Jun et al. (2012) *Estuaries & Coasts*
\textbf{NH}_4^-\text{-N Sorption/Desorption}

- Sinks for \text{PO}_4^{3-} \& \text{NH}_4^+

\textbf{PO}_4^-\text{P Sorption}

- Saltwater intrusion release large amounts of \text{NH}_4^+.
Altamaha River

NH₄⁻N Sorption/Desorption

- NH₄⁺ release increases with increasing salinity.

PO₄⁻⁻⁻ P Sorption

- PO₄⁻⁻⁻ sorption increases with salinity & decreases with inundation.
Scaling Up: SLAMMM

Objectives:

• Quantify wetland habitat changes on Altamaha River due to SLR

Methods:

• Sea Level Affects Marshes Model (SLAMM) 6.1
• Parameterization of the salinity sub-model
• LiDAR (2007)
• Bathymetry (from 2006)
• National Wetland Inventory (2007)
• Variable accretion rate using MEM 3.4 (Morris et al. 2002)
Salinity at MHHW

Initial Condition

2100; 1m SLR
Habitat Distribution

Initial Condition

Habitat Distribution

2100; 1m SLR
Conclusions

• Saltwater intrusion promotes N and C release
 • CH$_4$ ↓
 • Sulfate reduction ↑

• Denitrification and N$_2$O production are unclear.

• P sorption: ↑ salinity; ↓ inundation

• Up-stream/inland migration of tidal forests

From the bottle to landscape…..
Unkowns and Future Work

- Spatial Variability
- Ecosystem migration (Ability? Timing?)
- Subsidence?
- Vegetation:
 - Productivity
 - Species composition

\[
\downarrow \text{Productivity} + \Delta \text{Community} \quad \rightarrow \quad \downarrow \text{C Quantity} + \uparrow \text{C min}
\]

- Interactions with other global change factors
- Out of the bottle…
How does saltwater intrusion alter C cycling in intact plant soil systems?

Pulse-Chase: $^{13}\text{CO}_2$

Insight into...

- Assimilation
- Short-term plant-soil flux
- C quality/quantity controls on mineralization pathway
- Microbial players?

...with minimal disturbance
Manipulative Field Experiment

Saltwater Addition Long Term Experiment

Georgia Coastal Ecosystems LTER Project
Acknowledgements

- IU Wetlands Lab: Anya Hopple, Brianna Richards, Laura Trice, Ann Altor, & Jacob Bannister
- Jeff Ehman (IU)
- Jacob Shalack, Justin Manley, Ashby Nix, Caroline Reddy (GCE LTER)
- David Mixon (GA DNR)

This material is based upon work supported by the U.S. Department of Energy through Grant No.TUL-563-07/08 to CBC, the National Science Foundation Grant No. OCE-9982133 to the Georgia Coastal LTER, and the National Science Foundation Graduate Research Fellowship Grant to ERH.