Testing Wetland Hydrology Criteria Modeling with Long Term Water Table

T.M. Williams and R.W. Skaggs
Baruch Institute of Coastal Ecology and Forest Science, Clemson University
Dept. of Agricultural and Biological Engineering, North Carolina State University
Wetlands Hydrology Criteria must occur in 50% of years

- Surface Inundation 7 consecutive days in growing season.
- Soil Saturation for 14 consecutive days in growing season.
- Assume soil saturation if water table depth is within 6” for sands and 12” all other soil textures.
- Growing season- 50% of years air temp over 28° F
- Georgetown SC March 12- Nov 22 (1950-2010 data NOAA)
Problem to solve by threshold method: shallow water table variability

Depth (cm) Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

-200 -150 -100 -50 0 50

Mean Depth
Upper 99% CI Observation
Lower 99% CI Observation
Upper CI Mean
Lower 99% CI Mean

Actual Weekly Data
Assumption of threshold method

- Spatial variability of water table depth is independent of absolute depth (valid for shallow water tables)
- Depth well A at time t = dA(t)
- Depth well B at time t = dB(t)
- If dA(t) = dB(t) +x and dA(t+1) = dA(t) +y
- Then dB(t+1) = dA(t) +x+y
- If dA = wetland threshold
- then dB wetland character is determined by sign of x
Study site
Test data collection

Georgetown 2E
Weather station
<table>
<thead>
<tr>
<th>Soil Series</th>
<th>Taxonomy</th>
<th>Drainage Class</th>
<th>Well numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centenary</td>
<td>Entic Grossarenic Alorthods</td>
<td>well drained</td>
<td>36</td>
</tr>
<tr>
<td>Chipley</td>
<td>Aquic Quartzipsamments</td>
<td>somewhat poorly drained</td>
<td>16, 38, 39, 43</td>
</tr>
<tr>
<td>Echaw</td>
<td>Oxyaquic Alorthods</td>
<td>moderately well drained</td>
<td>7</td>
</tr>
<tr>
<td>Hobcaw</td>
<td>Typic Umbraquults</td>
<td>very poorly drained</td>
<td>2*, 10, 22, 40*</td>
</tr>
<tr>
<td>Lakeland</td>
<td>Typic Quartzipsamments</td>
<td>excessively well drained</td>
<td>1, 17, 20, 24, 26*</td>
</tr>
<tr>
<td>Leon</td>
<td>Aeric Alaquods</td>
<td>poorly drained</td>
<td>3, 4, 6, 8, 11, 13, 14, 19, 21, 23, 27, 33, 34, 37, 41, 44, 45</td>
</tr>
<tr>
<td>Lynn Haven</td>
<td>Typic Alaquods</td>
<td>poorly to very poorly drained</td>
<td>12*, 15, 18, 29, 30</td>
</tr>
<tr>
<td>Witherbee</td>
<td>Aeric Alaquods</td>
<td>somewhat poorly drained</td>
<td>28*, 35*</td>
</tr>
<tr>
<td>Yauhannah</td>
<td>Aquic Hapludults</td>
<td>moderately well drained</td>
<td>9, 25, 31, 32*</td>
</tr>
</tbody>
</table>
Well 4 approximately same as threshold wetland in dry year with tropical storm
In 1984 well 4 is similar to threshold in early but slightly drier in during the heavy rains of late summer and fall.
Well 8 is clearly drier
Well 11 clearly wetter than threshold

Well 11, 1981

Day of Year, 1981

Water Table depth, cm

- Observed, Weekly, Well 11
- Threshold, DM Simulated, 15 cm Criterion
- Growing Season
Well 14 drier in wettest year
Daily data for 1976 shows suggests similar relation to threshold methods.
Example wetland determination for wells 14 and 19 in 1985
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>No</td>
</tr>
<tr>
<td>19</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Results of actual 14 year data collection confirm results
Conclusion

- For shallow depths, relative depth differences between wells were the same for periods of 60 days to 14 years.
- Threshold method produced valid evaluation of wetland hydrologic criterion that was confirmed long term water table measures.

Test was done on Leon sand and within 10 km of weather station.