Use of ALOS PALSAR for Regional Mapping and Monitoring of Mangroves

Richard Lucas

1Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, Ceredigion, Wales, SY23 3DB, Wales, UK
Tel: +44 1970 622612, Fax: +44 1970 622659, Email: rml@aber.ac.uk

Takuya Itoh2, Masanobu Shimada, Manabu Watanabe, Takeshi Motohka
Tomohiro Shiraishi and Rajesh Thapa
Japan Aerospace Exploration Agency, Earth Observation Research Center, Sengen 2-1-1 Tsukuba Ibaraki, Japan, 305-8505

Osamu Isoguchi
Tsutomu Yamanokuchi
2ALOS Data Analysis and Research Project Group, Tsukuba Office
Remote Sensing Technology Center of Japan (RESTEC).

Ake Rosenqvist
Solo Earth Observation (soloEO). TTT Mid-Tower 1708, Kachidoki 6-3-2, Chuo-ku, Tokyo 104-0054, Japan
Overview

• The Japanese Space Exploration Agency (JAXA) Kyoto and Carbon (K&C) Initiative
• Spaceborne L-band SAR
 – JERS-1 SAR and ALOS PALSAR
• Classification of mangroves
 – Extent and structure
• Detection of change
 – River dynamics
 – Direct clearance
 – Coastal erosion and accretion
 – Climate and sea level fluctuation
• Contribution to JAXA’s Global Mangrove Watch.
The Japanese Space Exploration Agency
Kyoto and Carbon (K&C) Initiative

• Established to support explicit and implicit data and information needs raised by:
 – International environmental Conventions
 – Carbon Cycle Science
 – Conservation of the environment

• Led and coordinated by EORC JAXA
 – Undertaken by an international Science Team

• Focuses primarily on defining and optimizing provision of data products and validated thematic information derived from *in-situ* and satellite sensor data
• JERS-1 SAR (1992-1998)
 – L-band HH
• ALOS PALSAR (2007-2010)
 – L-band HH and HV (FBD)
 – L-band HH (FBS) and fully polarimetric (PLR)
• ALOS-2 SAR (Planned launch, 2013)
The USGS/NASA Global Mangrove Dataset

L-band SAR: Mapping Mangrove Extent
Mangrove Extent

- **ALOS PALSAR**
 - Difficulty in mapping mangrove extent when adjoining other vegetation

- **Landsat FPC**
 - Provides clear differentiation of mangrove and non-mangrove areas
Mangrove Extent

Texture: Maximum Entropy (Forest/Mangrove)

Minimum HV
Maximum area of water
Mangrove Structure

- SRTM or Tandem X
 - Focuses classification on low-lying coastal areas
 - Subsequently useful for retrieval of mangrove canopy height
 - Height retrieval more successful in larger, contiguous areas of closed canopy forest
- Landsat FPC
 - Related to cover
 - Assists in retrieval of height
 - Australia only.
Airborne Observations of Mangrove

Kakadu National Park, NT

Daintree National Park, QLD

Comparison of NEXTMAP Intermap and SRTM DEMs, Belize Mangroves
Approach to classifying mangroves

• Define extent of mangroves
 – Existing data layers
 – Landsat FPC
 – Direct classification based on ALOS

• Separate ‘low’ from ‘high’ mangroves
 – SRTM, Tandem-X
 – Definition of height locally variable (e.g., 10 m)

• Separate high mangroves with/without prop root systems

• Assign all remaining objects to ‘low mangroves’

• Assign biomass classes (e.g., using relationships with L-band HV; upward & downward trends)
Example of Mangrove Classification
Hinchenbrook Island, Queensland, Australia

Queensland RE Mapping

Structural classification

Legend:
- Low biomass mangroves
- High biomass mangroves
- High biomass mangroves with prop root systems
- Non-mangrove
Change Detection using L-band SAR

- Changes in River Dynamics
 - South east Asia

- Human-induced change
 - Perak, Malaysia

- Coastal erosion and accretion
 - French Guyana

- Response to climate and sea level fluctuation
 - Gulf of Carpentaria, Northern Australia
Changes in Mangroves, river channels, SE Asia.

ALOS PALSAR HH 1996, 2007 and 2010 in RGB
Stable mangroves, SE Asia.

ALOS PALSAR HH 1996, 2007 and 2010 in RGB
Changes in Mangroves along Estuary, Indonesia

ALOS PALSAR HH 1996, 2007 and 2010 in RGB
Anthropogenic change; seaward expansion

Indonesia

ALOS PALSAR HH 1996, 2007 and 2010 in RGB
Human-induced change, Perak, Malaysia

1996
2007
2008
2009
2010
Mangrove Dynamics: Perak, Malaysia

1996-2008

2008-2010
Changes in mangroves and proximal environments, French Guiana
French Guiana: Changes associated with erosion and accretion of sediments
Composite of HH 1996 to 2010
Changes in mangrove extent, French Guyana: 1996 to 2010 (N06W053)
Changes in mangrove extent, French Guyana: 1996 to 2010 (N06W053)
Classification of Change: JERS-1 SAR and ALOS PALSAR comparisons

Changes in mangroves along the French Guiana coast (1996 to 2008)
Gulf of Carpentaria, Queensland, Australia

Climate and sea level fluctuation
1988

Gulf of Carpentaria, Queensland, Australia
1989

Gulf of Carpentaria, Queensland, Australia
1990

Gulf of Carpentaria, Queensland, Australia
1990

Gulf of Carpentaria, Queensland, Australia
1991

Gulf of Carpentaria, Queensland, Australia
1992

Gulf of Carpentaria, Queensland, Australia
1993

Gulf of Carpentaria, Queensland, Australia
1994

Gulf of Carpentaria, Queensland, Australia
1996

Gulf of Carpentaria, Queensland, Australia
1997

Gulf of Carpentaria, Queensland, Australia
1998

Gulf of Carpentaria, Queensland, Australia
1998

Gulf of Carpentaria, Queensland, Australia
1999

Gulf of Carpentaria, Queensland, Australia
Gulf of Carpentaria, Queensland, Australia

2000
2001

Gulf of Carpentaria, Queensland, Australia
2002

Gulf of Carpentaria, Queensland, Australia
2003

Gulf of Carpentaria, Queensland, Australia
2004

Gulf of Carpentaria, Queensland, Australia
2005

Gulf of Carpentaria, Queensland, Australia
2006

Gulf of Carpentaria, Queensland, Australia
2007

Gulf of Carpentaria, Queensland, Australia
2008

Gulf of Carpentaria, Queensland, Australia
2009

Gulf of Carpentaria, Queensland, Australia
2010

Gulf of Carpentaria, Queensland, Australia
1988

Gulf of Carpentaria, Queensland, Australia
Mangrove Change (1988-2010)

Gulf of Carpentaria, Queensland, Australia
Changes in Mangrove Extent, Northern Australia

- Mapping from established baselines using ALOS PALSAR indicated relative general stability along Queensland coast

- Exception is the Gulf of Carpentaria
 - Significant seaward expansion
 - Some inland extension

- Associated with:
 - Extensive but periodic flooding and sediment discharge
 - Inland intrusion of sea water

Areas in yellow along seaward margin indicate seaward extension

Changes in the extent of mangroves, as observed using time-series of Landsat sensor data
Changes in Mangrove Extent, Northern Australia

- Mapping from established baselines using ALOS PALSAR indicated relative general stability along Queensland coast

- Exception is the Gulf of Carpentaria
 - Significant seaward expansion
 - Some inland extension

- Associated with:
 - Extensive but periodic flooding and sediment discharge
 - Inland intrusion of sea water

Areas in yellow along seaward margin indicate seaward extension

MODIS Pre-flood

MODIS Flooding (2009)
Observations using time-series of L-band SAR data

• Significant changes in mangroves observed in coastal regions globally
 – Attributed to a combination of factors, including fluctuations in sea level, climatic variability, hydrological cycles, oceanic circulation and land use/cover change

• Potential link to land cover change (e.g., deforestation)
 – Increasing sediment loads

• Observations not yet effectively linked to drivers of change.
 – Need to understand and predict the likely impacts of future changes.
Contributions to JAXA’s Global Mangrove Watch
Contributions to JAXA’s Global Mangrove Watch

- Evaluating use of JERS-1 SAR and ALOS PALSAR data for:
 - Establishing a 1996 baseline of mangrove extent.
 - Quantifying change away from the baseline.
 - Evaluating the use of existing Landsat-derived (with SRTM where available) baselines (Giri et al., 2011; Fatoyinbo et al., 2011) against which to detect change.

- Developing methods for:
 - Mapping mangrove change (losses and gains) and stable mangroves.
 - Retrieving mangrove structure and biomass.
Acknowledgements

• Colleagues at the Japanese Space Exploration Agency (JAXA), the Remote Sensing Technology Center of Japan (RESTEC) and the Kyoto and Carbon Initiative

• Anthea Mitchell/Tony Milne, School of Biological, Earth and Environmental Sciences (BEES), the University of New South Wales, Australia (UNSW).

• Arnon Accad, Queensland Herbarium

• Joao Carreiras, Tropical Research Institute, Portugal

• John Armston, The Queensland Department of Natural Resources and Water (QDNRW)

• Karin Viergever/Iain Woodhouse, University of Edinburgh, Edinburgh, UK.

• Christophe Proisy, IRD/UMR AMAP, Montpellier, France.

• Pedro Walfir, Universidade Federal do Para, Brazil.

• Dirk Hoekman, University of Wageningen

• Maurizio Santoro, Gamma Remote Sensing