Saltwater intrusion causes peat collapse.

Principal researchers:
- S. Charles, S. Servais, B. Wilson,
- J. Kominoski, S. Davis, T. Troxler,
- E. Gaiser

Technical researchers:
- M. Kline, M. Robinson, L. Bauman

Added salt (10 PPT) and phosphorus (P, \(\times 2\) ambient load)
- ... Freshwater (FW)
- ... Freshwater with P (FWP)
- ... Saltwater (SW)
- ... Saltwater with P (SWP)
Saltwater intrusion causes peat collapse.

Tukey’s HSD post-hoc test compared to the control (FW)

… n.c. when no change

… ⤷ or ⤵ when $P < 0.05$

… ⇓ or ⇑ when insignificant

Geoderma Servais et al. (2019), Est. and Coa. Wilson et al. (2018), Charles et al. (in review)
Saltwater intrusion causes peat collapse.

Tukey’s HSD post-hoc test compared to the control (FW)
… n.c. when no change
… ✆ or ⬇ when $P < 0.05$
… ✆ or ⬇ when insignificant

Geoderma Servais et al. (2019), Est. and Coa. Wilson et al. (2018), Charles et al. (in review)
Saltwater intrusion causes peat collapse.

<table>
<thead>
<tr>
<th>Rate</th>
<th>Biomass</th>
<th>Soil</th>
<th>Bulk Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litter breakdown</td>
<td>Root growth</td>
<td>Root breakdown</td>
<td>Aboveground biomass</td>
</tr>
<tr>
<td>FWP</td>
<td>⇆</td>
<td>⇆</td>
<td>⇆</td>
</tr>
<tr>
<td>SW</td>
<td>⇣</td>
<td>⇣</td>
<td>⇣</td>
</tr>
<tr>
<td>SWP</td>
<td>⇆</td>
<td>⇆</td>
<td>⇆</td>
</tr>
</tbody>
</table>

Tukey’s HSD post-hoc test compared to the control (FW)

… n.c. when no change

… ⇆ or ⇣ when $P < 0.05$

… ⇆ or ⇣ when insignificant

Saltwater intrusion causes peat collapse.

<table>
<thead>
<tr>
<th></th>
<th>Rate</th>
<th>Biomass</th>
<th>Soil</th>
<th>Bulk Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Litter breakdown</td>
<td>Root growth</td>
<td>Root breakdown</td>
<td>Aboveground biomass</td>
</tr>
<tr>
<td>FWP</td>
<td>⇑</td>
<td>⇑</td>
<td>⇑</td>
<td>⇑</td>
</tr>
<tr>
<td>SW</td>
<td>⇑</td>
<td>⇑</td>
<td>⇑</td>
<td>⇑</td>
</tr>
<tr>
<td>SWP</td>
<td>⇑</td>
<td>⇑</td>
<td>⇑</td>
<td>⇑</td>
</tr>
</tbody>
</table>

Tukey’s HSD post-hoc test compared to the control (FW)

… n.c. when no change

… ⇑ or ⇑ or ⇑ or ⇑ when $P < 0.05$

… ⇑ or ⇑ or ⇑ or ⇑ when insignificant

Geoderma Servais et al. (2019), Est. and Coa. Wilson et al. (2018), Charles et al. (in review)
Can restored freshwater recover soil elevation?

Dong Yoon Lee¹,², John Kominoski²

¹ South Florida Water Management District
² Florida International University
Freshwater recovery experiment

- **Hypothesis**: The legacy of saltwater intrusion would continue; P legacy would last longer than salt legacy
- **Methods**:
 - Add only **FRESHWATER**
 - CO$_2$ flux was measured monthly

CO$_2$ flux measured under different light and temperature
Porewater

Salinity (ppt)

Soluble reactive P (µmol L⁻¹)

Dissolved organic carbon (µmol L⁻¹)

Recovery

Salt effect ($P < 0.001$)

Salt effect ($P < 0.001$)
Phosphorus content (µg g⁻¹) for different parts of the ecosystem:

- **Leaf**:
 - FW
 - FWP
 - SW
 - SWP

- **Litter**:
 - FW
 - FWP
 - SW
 - SWP

- **Root**:
 - (not measured)

- **Soil**:
 - FW
 - FWP
 - SW
 - SWP

(pre-recovery)
Phosphorus

P legacy ($P < 0.01$)
Salt legacy ($P < 0.01$)

Post-recovery

(pre-recovery)

Phosphorus content ($\mu g \ g^{-1}$)

- Leaf
- Litter
- Root
- Soil

FW
FWP
SW
SWP
Aboveground biomass

Aboveground biomass (g dw m$^{-2}$)

Pre-recovery … … P effect ($P < 0.001$)

Recovery … … P legacy ($P < 0.001$)

… salt legacy ($P < 0.01$)
Metabolism during freshwater recovery

Gross primary production at maximum light

- no salt legacy
- P legacy ($P < 0.001$)

Ecosystem respiration

- salt legacy ($P < 0.05$)
- P legacy ($P < 0.001$)
Ecosystem carbon balance

Net ecosystem metabolism

\[\text{Net ecosystem metabolism} = [\text{CO}_2]_{\text{uptake}} - [\text{CO}_2]_{\text{release}} \]

\[= \text{GPP} - \text{ER} \]

For example,

… when NEM > 0

: net carbon gain

… when NEM < 0

: net carbon loss

(Error bars are 25th and 75th percentiles of 1000 model outputs)
Ecosystem carbon balance

Net ecosystem metabolism (g C m$^{-2}$ month$^{-1}$)

FW...
... +17 g d.w. m$^{-2}$ mon$^{-1}$
... +1.5 mm yr$^{-1}$

FWP...
... -6.3 mm yr$^{-1}$

SW...
... -7.1 mm yr$^{-1}$

SWP...
... -12.5 mm yr$^{-1}$

(Error bars are 25th and 75th percentiles of 1000 model outputs)
Summary

Effect of legacy

a) FWP

b) SW

c) SWP

Lag time for recovery
• Although P legacy was effective, its effect can be short-term
• Salt legacy led to long-term changes in the rate and pathway of carbon and nutrient dynamics (likely due to geochemical and community changes)
• When salt and P legacies coexisted, organisms that adapted to high salinity and P enhanced net carbon loss ADDITIVELY
• Short-term exposure to saltwater disproportionally enhanced carbon loss pathways and will delay ecosystem recovery
Phosphorus

Aboveground P concentration (mg P m⁻²)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>FW</th>
<th>FWP</th>
<th>SW</th>
<th>SWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW</td>
<td>400</td>
<td>350</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>FWP</td>
<td>400</td>
<td>350</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>SW</td>
<td>400</td>
<td>350</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>SWP</td>
<td>400</td>
<td>350</td>
<td>300</td>
<td>250</td>
</tr>
</tbody>
</table>

Phosphorus content (µg g⁻¹)

- Leaf
- Litter
- Root
- Soil

Post-recovery

(pre-recovery)