Comprehensive Assessment of Coastal Fisheries Responses to Extreme Climate Events

RO Santos¹,² *, J Rehage¹, M Bhat¹, G Cook², R Huffaker³, A Rios⁴, J Osborne⁵, C Kavanagh⁶

¹Florida International University, FL, USA
²University of Central Florida, Florida, USA
³University of Florida, Gainesville, FL, USA
⁴NOAA-Southeast Fisheries Science Center, Key Biscayne, FL, USA
⁵Everglades National Park, USNPS/SFNRC, Homestead, Florida, USA
⁶Everglades National Park, Florida Bay Interagency Science, Florida, USA

GEER 2019

*email: rsantosc@fiu.edu
Extreme Climate Events

Introduction

Rapid great extreme weather event increase climate change implicated

- Geophysical disasters
- Climate related (hydro-meteorological) disasters
- Economic damage

EM-DAT International Disaster Database,
Center for Research on Epidemiology of Disasters,
University of Louvain.

Graph showing number of disasters and economic damage from 1950 to 2010.
Definitions:

- A disturbance event is considered an Extreme Climate Event (ECE) if there is both a statistically rare climatic event and extreme ecological response.

- Extreme responses cross critical thresholds where community structure and ecosystem function move outside their normal bounds.

Extreme Climate Events

R Santos et al. (2016) Ecosphere
Introduction

Climate Change and Fisheries

Widespread impacts attributed to climate change based on the available scientific literature since the AR4

*Reports mostly on commercial landings and infrastructure.

Effects on recreational fisheries overlooked
Fisheries Resilient or Prone to Collapse?

South Florida Recreational Fisheries

• FL - Highest number of recreational anglers, the most dollars spent on fishing in the US, and the highest quality of fishing worldwide

• Total economic impact (Fedler, 2013)
 • $5.2 billion- statewide saltwater angling
Questions

Fisheries Resilient or Prone to Collapse? South Florida Recreational Fisheries

Q1: How are the catch structure trajectories from baseline conditions?
 - Gradual or Stable
 - Abrupt or Reversible

Q2: What is the temporal dynamic (inter-year) of catch structure change?
 - Abrupt changes after ECEs?
 - Distinct spatial rxn to ECEs?
Fisheries Resilient or Prone to Collapse?

Adopt community ecology concepts

- Assess speed and direction of community changes
- Responses to disturbances
- Trajectories of community change ≈ Resilience

Methods

Lamothe et al. (2019) Ecosphere (fig); Caceres et al. (2019); Ecol Monog; Bagchi et al. (2017) Ecol Appl
Fisheries Resilient or Prone to Collapse?

Adopt community ecology concepts

Methods

Lamothe et al. (2019) Ecosphere (fig - up); Caceres et al. (2019) (fig – down); Ecol Monog; Bagchi et al. (2017) Ecol Appl (fig – down)
Fishery-Dependent Data (FDD)

- Fishing reports submitted by fishing guides to Everglades National Park:
 - 1986 to 2017
 - Useful for stock and ES assessments
 - Events: Hurricanes, Seagrass Die-off, Cold Spells
 - CPUE in 6 Fishing Areas
 - Merged into 4: (1) Inner Florida Bay/ (2) Outer Florida Bay/ (4, 5) West Inner/West Outer (3, 6)

- We sum catch and effort across the months, and created average annual CPUE value
- We analyzed the catch structure based on a Bray-Curtis dissimilarity matrix of the average annual CPUE
Study Domain

Recreational Fisheries in ENP

Materials & Methods

Top 20 species

- Spotted seatrout
- Red drum
- Snook
- Crevalle jack
- Gray snapper
- Tarpon
- Ladyfish
- Sheepshead
- Black drum
- Bonefish
- Spanish mackerel
- Goliath grouper
- Blacktip shark
- Florida pompano
- Lemon shark
- Tripletail
- Bluefish
- Bonnethead
- Garfish
- Sea catfish

Total Count

- Spotted seatrout: 85,949
- Red drum: 76,081
- Snook: 70,334
- Crevalle jack: 36,866
- Gray snapper: 34,406
- Tarpon: 31,901
- Ladyfish: 26,824
- Sheepshead: 11,470
- Black drum: 9,822
- Bonefish: 6,247
- Spanish mackerel: 6,025
- Goliath grouper: 4,226
- Blacktip shark: 4,217
- Florida pompano: 4,126
- Lemon shark: 3,937
- Tripletail: 2,664
- Bluefish: 2,504
- Bonnethead: 2,133
- Garfish: 1,998
- Sea catfish: 1,882
Species Occurrence

Most species caught across all fishing areas

Results

Species richness consistency was spatially dependent:

- S' relatively consistent across years in the “outer” fishing areas
- More variable at the “Inner” fishing areas
Results: ordination space of the catch
Results:

Stable displacement from initial conditions

- **Inner Florida Bay**
- **Outer Florida Bay**
- **West Inner**
- **West Outer**

Stable
Results

Geometric analysis

Similar catch structure temporal dynamics

Catch structure more similar than others

The least of abrupt changes in West Outer

However, magnitude of change similar across periods
Q1: How are the catch structure trajectories from baseline conditions?
 - Stable?

Catch vs Effort

Anglers vs Guides

Effects of data transformation and distance matrix
Q2: How is the temporal (inter-year) dynamic of catch structure change?

- Overall, consistent magnitude of change across periods
- Spatially explicit, limited responses to ECEs?
 - legacy/confounded effects

- Importance of species specific responses
 - Breakpoint analysis
 - Event coincidence analysis
Thank You!

email: rsantosc@fiu.edu