Economic Assessment of Outdoor Water Use Restrictions in South Florida

Lara Kiesau, Pallab Mozumder, Mahadev Bhat, Michael Sukop
Dept. of Earth and Environment, FIU.
GEER Conference (April 22-25, Coral Springs, FL).
Overview

- Background on Outdoor Water Use and Restrictions
- Estimated Outdoor Water Use in South Florida
- Monetary Value of estimated restricted Water
- Study on Valuation of Ecosystem Services
- Outlook
Background: Outdoor Water Use

- The average American family uses over 300 gallons of water per day (gpd) (US EPA, 2017)

- About 8.1 million people live in 16 counties rely on public water supply (SFWMD, 2018)

 A daily consumption of above 2 billion gallons per day

- Growing population in South Florida increases pressure:
 - 10% population increase between 2010 and 2017 (Office of Economic & Demographic Research, 2017)

- 30-50% of total water consumption occurs outdoors (EPA, 2013; SFWMD, 2019; Lee, Tansel & Balbin, 2011)
Outdoor Water Use Restrictions (OWR)

• Common demand-side management policy tool (Survis & Root, 2012)

• 32 U.S. states have policy regulations requiring or recommending Outdoor Water Use Restrictions (Milman & Polsky, 2016)
 • Florida among those with highest number of policies requiring OWR

• Types of Outdoor Water Use Restrictions vary in frequency, time & duration

• Research mainly focused on conservation success
 • Economic effect/efficiency relatively understudied
Outdoor Water Use Restrictions in South Florida

- Year-Round Landscape Irrigation Rule
- In effect since 2010
- Prohibited between 10am and 4pm
Average monthly total water use, per capita in South Florida

Comparison of per capita total water use in South Florida counties

- Highest consumption: Monroe with average use of 227 gallons per day
- Lowest consumption: Okeechobee with average use of 53 gallons per day

Comparison of Household 50% Outdoor Water Use of Counties

- Average family size: 2.5
- Calculation of outdoor water use: 50% of total use
- Between ≈ 250 gpd (Monroe) and ≈ 75 gpd (Okeechobee)
Estimated average additional outdoor water use without restrictions

- Possible additional outdoor water use is estimated based on average current daily outdoor water consumption which is extrapolated to the amount of restricted days

- Example:

 \[
 \text{Average outdoor water use} \times \frac{\text{Number of restricted days}}{\text{Days in a given month}} = \text{Estimated additional outdoor water use}
 \]

 \[
 100 \text{gpd} \times \frac{18 \text{ days}}{30 \text{ days}} = 60 \text{gpd}
 \]

Average monthly water bill per household

- Different price rate structures among and within counties
- Average household water consumption was used to calculate water bill under lowest and highest rate structure for each county, then average was calculated
- Monroe highest water bill with $130
- Orange and Highlands lowest water bills around $30

Based on: SFWMD 2017 Utility Rate Survey
Estimated average **additional monthly water bill** per household without restrictions

- Monroe and Broward highest additional bill with around $40/$25
- Lowest additional bills Glades, Orange and Palm Beach with $5/$3

Based on: SFWMD 2017 Utility Rate Survey
Valuation of Ecosystem Services

- **Choice Experiment** to understand public preferences for Everglades Ecosystem Service Attributes & associated Trade-offs (work based on several Master Thesis of Nadia Seeteram, Abu HM Sikder, Mehrnoosh Asadi)

- Survey to elicit randomly selected households’ preferences (*willingness to pay*) for management/restoration alternatives accompanied by water restrictions
Estimated Willingness To Pay (WTP)

- Highest WTP for restrictions on water usage
- Marginal WTP of South Florida residents for one unit increase of OWR $11.95-13.35
- Large disconnect between respondents’ desire to maintain conveniences and how to achieve that through restoration
Comparison of surveyed WTP and estimated additional costs

For South Florida households for 1 year

<table>
<thead>
<tr>
<th>WTP Survey</th>
<th>Costs for 30% assumption</th>
<th>Costs for 50% assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>$24-27 million</td>
<td>$400 million</td>
<td>$686 million</td>
</tr>
</tbody>
</table>

great discrepancy between estimated costs of OWR and stated willingness to pay
Outlook

• **Development of penalty function**

 • Following approaches by Takatsuka et al., 2018; Brown et al., 2018

 • Capturing economic loss due to having OWR/not meeting target flow

 • With monetary value or amount of water as dependent variable

 • Precipitation, evapotranspiration, lake levels, population growth etc. as independent variables
Acknowledgements

We acknowledge support from the National Science Foundation (Award #1204762; # 1832693).

We are thankful to Nadia Seeteram, Vic Engel, Mike Sukop, and the members of South Florida Water Sustainability and Climate (SFWSC) team for their input and support in pursuing this study. However, the opinions expressed here are solely of the authors.
Thank you for your attention
Bibliography

- South Florida Water Management District (SFWMD), (2018). Who we are. Retrieved from https://www.sfwmd.gov/who-we-are

