Implications of Temporal and Spatial Vegetation Patterns on Performance of the Everglades Stormwater Treatment Areas

Jill King

GEER Conference April 23, 2019
Vegetation Study Objectives

- Evaluate STA vegetation biomass and nutrient storage
- Provide comparisons among Emergent Aquatic Vegetation (EAV) and Submerged Aquatic Vegetation (SAV)
- Relate results to performance
Importance of Vegetation in the STAs

- Provide hydraulic resistance
- Enhance settling of nutrients
- Surface for periphyton/microbial
- Nutrient storage
- Co-precipitation mechanisms
Vegetation Study Sites

Sampling Design

<table>
<thead>
<tr>
<th></th>
<th>SAV</th>
<th>EAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Collected</td>
<td>% coverage, Species composition, Total Biomass, Total Phosphorus (TP), Total Carbon (TC), Total Nitrogen (TN), Ash Content, Total Calcium (SAV only)</td>
<td>% coverage, Species composition, Total Biomass, TP, TC, TN, Ash Content</td>
</tr>
</tbody>
</table>
SAV Biomass Decline

STA-2 Cell 3 SAV

Nov. 2015

Sept. 2016

Aug. 2017

Inflow

Midflow

Outflow
Total Tissue Biomass Comparisons

- Inflow typically had highest biomass for EAV
- Midflow lowest biomass

- Midflow and outflow typically had highest biomass
- Substantial loss of SAV over three events in each location
SAV Tissue Nutrient Storage

- Species observed in STA 2 Cell 3:
 - *Chara* spp.
 - *Naja guadalupensis*
 - *Potamegeton illinoensis*
 - *Spirogyra* spp.
Nutrient Storage Comparisons

- Declining gradient for phosphorus storage from inflow to outflow for both vegetation types
- Nutrient storages were all significantly different among the two vegetation types
STA-2 Performance Comparisons

STA-2 Cell 3 (SAV)
Surface Water Total Phosphorus

STA-2 Cell 1 (EAV)
Surface Water Total Phosphorus
Summary

- **Biomass**
 - Spatial differences in SAV vs. EAV along nutrient gradient
 - Temporal loss of SAV biomass over course of study at all sites

- **Nutrient Storage**
 - Nutrient storages significantly higher for EAV compared to SAV
 - Spatial differences in SAV species, *Chara* had highest storage capacity

- **Performance**
 - Performance decline following loss of SAV biomass
 - Storm impacts complicated correlations between performance and SAV biomass loss
 - EAV biomass and performance were fairly consistent throughout study
THANK YOU

Special thanks to Jake Dombrowski, Matt Powers, Jess Wilson, Odi Villapando, Kathy Pietro, and staff of DB Environmental.