Introduction

Background: In the Everglades, both marl prairie (MP) and ridge and slough (R&S) landscapes are, spotted by woody dominated tree islands. Tree islands are a vital component of the complex Everglades ecosystem as biogeochemical hot spots for phosphorus accumulation, keystone habitats as refuge for marsh plant and animal species, and culturally important archeological sites.

These islands often include different plant communities along a hydrologic gradient. These communities are hardwood hammocks, bayhead, and bayleaf swamp forests. They are sensitive to hydrologic changes, natural as well as those related to the Comprehensive Everglades Restoration Plan (CERP).

Natural disturbances can also influence the dynamics of these tree islands. Among the major disturbances, hurricanes are perhaps most frequent and have a greater influence. Previous results have shown higher mortality 3-4 years after a hurricane disturbance (Ruiz et al., 2011). In 2017, Hurricane Irma hit the Everglades affecting several tree islands.

Objective: The objectives of this study were to explore the relationship between hurricane-induced tree damage and structural variables, and to assess the vegetation recovery during the first year after the hurricane.

Hypothesis: Hurricane Irma caused an immediate increase in tree mortality.

Methods

- Pre-hurricane data was available from eight tree islands including one prairie island (Grossman Hammock) along the eastern boarder of the Park, six islands (Black Hammock, Gumbo Limbo, Satinleaf, Irongrape, Vulture, and Chekika) in Shark River Slough, and one (SS-81) in Northeast Shark River Slough (Figure 1).
- Sampling was done in permanent hardwood hammock plots (varying in size from 300 to 625 m²) within the tree islands. Those plots had been sampled 1-3 years prior to the hurricane, and the post-hurricane sampling was done 3 and 14 months after the hurricane.

Results

- Larger trees were more likely to be damaged due to broken stems by wind.
- Probability of survival increases in trees with larger DBH.
- Hurricane did have an immediate effect on mortality in some islands, and mortality continued to increase in two islands the year after.

Conclusions

- Larger trees were more likely to be damaged due to broken stems by wind.
- Probability of survival increases in trees with larger DBH.
- Hurricane did have an immediate effect on mortality in some islands, and mortality continued to increase in two islands the year after.

Acknowledgements


Bibliography

Acknowledgements

1. We would like to thank SOFTEL members for help in data. We acknowledge U.S. Army Corps of Engineers (U.S. Army Engineer Research & Development Center) for funding. CAM 89312107/17-6-0020. This study was advised under E2P Study # E2P-01238 and Permit # E2P-2013-00024.