AN IMPROVED BISCAYNE BAY HYDRODYNAMIC MODEL
FOR EVALUATION OF RESTORATION EFFORTS AND
GROUNDWATER FLOW ON SALINITY

Erik Stabenau & Amy Renshaw
National Park Service
Homestead, FL

Tuesday, April 20th @ 4:45 pm, session 14
Contact: Erik_Stabenau@nps.gov or 305-224-4209
Overview

- Physical setting and hydrodynamic modeling updates
- Evaluation of BBSM v.4
- Uses and next steps
The Model

• Model developed by John Wang and others at the University of Miami
• Used in various forms since late 70’s.
• General name = CAFE3D
 – Current implementation is single layer
 – Fortran
• Model has been used in Biscayne Bay to:
 – determine residence times for various locations in the bay
 – evaluate the effect of restoration alternatives with respect to salinity
 – investigate connectivity between basins
Biscayne Bay Simulation Model v.3

Predicting salinity regime under alternate discharge scenarios

BBSM model with:
- Advection and diffusion
- Rain and evaporation
- Wind stress
- Bottom friction
- Tidal mixing
- Surface water inflows
- Control on boundary conditions
- 11 years (1996 – 2006) at 20 minute resolution
- Model processing time = 37 hours
Biscayne Bay Simulation Model v.3

BBSM v3 strengths:
• Salinity mid-bay
• Seasonal aspects of salinity
• Currents are available

BBSM v3 weakness:
• Low variability in salinity nearshore
• Unrealistic representation of groundwater
Biscayne Bay Simulation Model (BBSM) v.4

- Maintained grid from v.3
- Updated friction to improve retention of water in shallow areas
- Added surfacewater component for coastal basins
- Added groundwater component based on modeled and measured estimates
- Improved input parameters
 - Daily rain-evaporation
 - Daily salinity on boundary
 - Calculated tides on each creek
 - Updated structure discharge
Water management and groundwater connections

- Tidal and seasonal influences on groundwater motion
- Water levels in canals are variable
- Wells west of coastal zone reveal extent of saltwater intrusion
- Low density freshwater floats on top of denser saltwater component
- Precipitation on basin between L-31E and coast flows to bay
Biscayne Bay Simulation Model (BBSM) v.4

- Maintained grid from v.3
- Updated friction to improve retention of water in shallow areas
- Added surfacewater component for coastal basins
- Added groundwater component based on modeled and measured estimates
- Improved input parameters
 - Daily rain-evaporation
 - Daily salinity on boundary
 - Calculated tides on each creek
 - Updated structure discharge

Biscayne National Park

South Florida Natural Resources Center
Biscayne Bay Simulation Model (BBSM) v.4

- Maintained grid from v.3

- Updated friction to improve retention of water in shallow areas

- Added surfacewater component for coastal basins

- Added groundwater component based on modeled and measured flow rates

- Improved input parameters
 - Daily rain-evaporation
 - Daily salinity on boundary
 - Calculated tides on each creek
 - Updated structure discharge
Biscayne Bay Simulation Model (BBSM) v.4

- Maintained grid from v.3

- Updated friction to improve retention of water in shallow areas

- Added surfacewater component for coastal basins

- Added groundwater component based on modeled and measured flow rates

- Improved input parameters
 - Daily rain-evaporation
 - Daily salinity on boundary
 - Calculated tides on each creek
 - Updated structure discharge
Overview

• Physical setting and hydrodynamic modeling updates

• Evaluation of BBSM v.4

• Uses and next steps
Biscayne Bay Simulation Model (BBSM) v.4

Salinity monitoring starts in 2004

Improved input parameters
 • Daily rain-evaporation
 • Daily salinity on boundary
 • Calculated tides on each creek
 • Updated structure discharge

Northern Coastal Station
Central Coastal Station
Southern Coastal Station

Biscayne National Park
South Florida Natural Resources Center
Comparison with available salinity data

- Improved mean and variability
- Maintained seasonality

Salinity monitoring starts in 2004

BBSM v3: 1996 – 2006
BBSM v4: 1996 – 2011
Comparison with available salinity data

• Improved mean and variability
• Maintained seasonality

Salinity monitoring starts in 2004

Comparison with available salinity data

- More natural salinity distribution
- Room for improvement in highest flow (lowest salinity) period

Salinity monitoring starts in 2004

Overview

• Physical setting and hydrodynamic modeling updates

• Evaluation of BBSM v.4

• Uses and next steps
Ongoing uses of BBSM v.4

L31E freshwater withdrawals
- FPL emergency operation to reduce salinity and temperature in IWF
- Freshwater being moved from coastal canal (L31E) to IWF
- Operations can be simulated and adjustments suggested to minimize impact

Restoration efforts
- Model and evaluate operations for phase 1 features
- Biscayne Bay coastal wetland phase 2 project

Dry Season flow request (2011)
- Trial operations authorized and performed
- BBSM v4 to be used to evaluate results
BBSM v.4 Available on GitHub

Open source
Language: Fortran

https://github.com/stabenau-nps/BBSM.git
Product of the South Florida Natural Resources Center

Contact: Erik_Stabenau@nps.gov or 305-224-4209
Data available at: EVER_data_request@nps.gov
BBSM v4 code available at: https://github.com/stabenau-nps/BBSM.git