Recent Progress in the MIKE Marsh Model (M3ENP) of Everglades National Park

Amy Cook1,3, Robert Fennema2, Georgio Tachiev1, Kiren Bahm2, Kevin Kotun2
Stephanie Long3
1GIT Consulting, LLC, Coral Gables, FL, USA
2South Florida Natural Resource Center, Everglades National Park, Homestead, FL, USA
3ADA Engineering, Doral, FL, USA
M3ENP-MIKE MARSH MODEL OF ENP

Developers:
• Robert Fennema, Georgio Tachiev, Amy Cook, Kiren Bahm

Funding
• NPS – CESI and Others

Commercial Software
• MIKE SHE
• MIKE 11
M3ENP-MIKE MARSH MODEL OF ENP

• MIKE SHE (MSHE) – 3D Saturated And Unsaturated Groundwater, 2D Overland/Sheet Flow, and 1D Unsaturated Zone Flow (Vertical)
 • Domain selection and discretization
 • Domain parameters (subsurface hydrology), vegetation, soil, overland flow, rainfall, ET, Manning’s number, detention storage, imperviousness
 • Boundary conditions (rainfall, evapotranspiration, groundwater)
• MIKE 11 (M11) – 1D flow model
 • Canals, cross sections, Manning’s number, structure and structure operations
 • Boundary conditions (stage and flow)
M3ENP-MIKE MARSH MODEL OF ENP

- Simulation Period
 - 1987-2010
- 1226 Square Mile Domain
- 120 Miles Of Canals
- Structures:
 - Tamiami Trail Culverts
 - Gates (Full Ops)
 - Pump Stations (Full Ops)
 - Stormwater Detention Areas
M3ENP-MIKE MARSH MODEL OF ENP

- Square Finite Difference Grid (400m discretization)
- Key Parameters: Hydraulic Conductivity, Manning n, Canal Seepage, Structure Operations
- 350 Observation Points
- Computes: Canal Water Levels, Flows, Seepage
- Spatial Plots: Flow Velocities, Water Depth
APPLICATIONS OF M3ENP

1. Feasibility Study for Proposed Biscayne Bay Ecosystem Restoration Reservoir
2. Effects of a Curtain Wall Adjacent to L31-N Canal
Reservoir
RESERVOIR

• Adjacent to L31N, south of C-4
• 638 acres – 1800 acres
Reservoir

- Drawdown, volumes, seepage rates, and potential withdrawals
- Up to 800 cfs are possible and will keep the levels at -25 Ft elevation (NGVD29)
Reservoir

Simulated Withdrawal

Resulting Water Levels With Proposed Pumping Vs. No Pumping
POTENTIAL BENEFITS

- Capture Excess Water From L-31N During the Wet Season to Improve Year-Round Flows to The Biscayne National Park
- Regional Water Supply
- Wellfield Recharge
- Stormwater Management

Reservoir

Conclusions
Curtain Wall
Curtain Wall

Effects on the hydrology in NE Shark River Slough

Three Models:
‘v21’ – No curtain wall implemented
‘v22’ – Same as ‘v21’ but with a 2-mi long curtain wall added along L31N
‘v23’ – Same as ‘v21’ but with a 5-mi long curtain wall added along L31N
Curtain Wall

Differences in surface water level

Curtain wall - 2-mile vs no wall

Δ = 2825 acre-ft

Wet season
(June to November)

Δ = 2296 acre-ft

Dry season
(December to May)
Curtain wall - 5-mile vs no wall
Differences in surface water level

\(\Delta = 8694 \text{ acre-ft} \)
Wet season (June to November)

\(\Delta = 8666 \text{ acre-ft} \)
Dry season (December to May)
Differences in surface water level

Wet season (June to November): Δ = 5878 acre-ft
Dry season (December to May): Δ = 6422 acre-ft

Curtain wall - 5-mile vs 2-mile wall
What are the potential benefits of a curtain wall?

• Increased Surface Water Storage
 • Averaged during 2000-2010 for dry (Jan-May, Dec) and wet (Jun-Nov) season periods. Summed across entire model domain, but main effect is in NE Shark Slough.

• Potential Reduction of Flow from West to East
 • North to South transect.
 • Several transects were tested including:
 a) 5-mile transect parallel and adjacent to the 5-mi curtain wall, and
 b) 7+ mi transect that extends ~0.5 mi south of G211.
FUTURE APPLICATIONS

• Cape Sable Seaside Sparrows
• Water Quality Analysis
• Quantification Of Canal Seepage
• Evaluation of Tamiami Trail Bridge Construction
• Stormwater Detention Area Effectiveness
THANK YOU!

Do you like my chickee?

I do, I do like your chickee! ...and what a lovely hat.