

Soil and Water Sciences Dept., University of Florida, Gainesville, FL South Florida Water Management District, West Palm Beach, FL

RATIONALE

Understand wetland biogeochemical processes that regulate phosphorus (P) removal efficiency and dictate long-term stabilization of P in Everglades STAs

Key Question

 Can internal loading of P to the water column be reduced or controlled, especially in the lower reaches of the treatment trains?

<u>Objectives</u>

- Determine existing nutrient (P) storages in STA soils
- Compare the differences in soil nutrient storages between emergent and submerged vegetation

Emergent Aquatic Vegetation (EAV) U = Uptake T = Transfer **D** = Decomposition and leaching A = Accretion **Pr = Precipitation** Water Floc RAS* **Pre STA** Soil

Submerged Aquatic Vegetation (SAV)

*RAS = Recently Accreted Soil

STUDY LOCATION

Two treatment flow ways (cells) in STA-2

- Cell 1 (EAV) -> Treatment area = 744 ha
- Cell 3 (SAV) -> Treatment area = 930 ha

- Floc comprised of unconsolidated material
- RAS determined based on color and texture
- Pre-STA layer representing antecedent soils (before STAs began operations)
- Bulk density (BD) and nutrient (P, C & N) concentrations
- Nutrient storages were calculated for each layer

Soil nutrient storage
$$\left(\frac{g}{m^2}\right)$$

$$= \frac{\text{Nutrient conc.} \left(\frac{\text{mg}}{\text{Kg}}\right) \times \text{BD} \left(\frac{\text{g}}{\text{cc}}\right) \times \text{depth (cm)}}{100}$$

RAS = Recently Accreted Soil

SPATIAL TRENDS – Bulk Density

Higher bulk density in SAV than EAV cells, in all soil sections

SPATIAL TRENDS – Phosphorus in Floc

Avg. depth (cm) – EAV- 7.7 and SAV- 10.7

SPATIAL TRENDS – Phosphorus in RAS

Avg. depth (cm) – EAV- 2.5 and SAV- 3.0

SPATIAL TRENDS – Phosphorus in pre-STA soils

Avg. depth (cm) - EAV- 19.1 and SAV- 16.4

SOIL NUTRIENT STORAGES

STA-2	Туре	Depth	Р	N	С	S
Cell-1		cm			g m ⁻²	
EAV	Floc	7.7 ± 0.4	2 ± 0.1	38 ± 2	487 ± 28	13 ± 1
	RAS	2.5 ± 0.2	1.7 ± 0.2	47 ± 3	680 ± 50	20 ± 2
	Pre-STA	19.1 ± 0.3	6.1 ± 0.3	787 ± 28	12641 ± 433	225 ± 10
Cell-3						
SAV	Floc	10.7 ± 0.5	8.5 ± 0.8	124 ± 9	2313 ± 161	44 ± 3.6
	RAS	3 ± 0.2	3.3 ± 0.3	78 ± 8	1452 ± 134	30 ± 3
	Pre-STA	16.4 ± 0.7	17.5 ± 2	1128 ± 42	18098 ± 735	278 ± 14

Phosphorus storage in vegetation biomass EAV \sim 3 - 4 g P m⁻² SAV \sim 0.5 – 1.5 g m⁻²

VEGETATION INDUCED DIFFERENCES

TP (mg kg-1)

DIFFERENCES – Phosphorus forms

VEGETATION DIFFERENCES— Phosphorus forms

SUMMARY

- Significant P enrichment in floc near inflows with concentrations diminishing towards outflows
- Floc P enrichment in EAV (Cell 1) was greater
 & spatially extensive compared to SAV (Cell 3)
- Nutrient (P, C, N, S) storages were typically higher in SAV (Cell 3) in comparison to EAV (Cell 1)
- SAV floc had higher percentage of TP as inorganic
 P (up to 55%) in comparison to EAV floc (20%)
- EAV floc had higher percentage of TP as organic P (up to 80%) in comparison to SAV floc (30-35%)

THANK YOU!!!

This study is funded by a research grant from the South Florida Water Management District (SFWMD). The SFWMD Lab and the Wetland Biogeochemistry Lab, UF are acknowledged for their analytical services.