SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Environmental Trends and Ecological Responses to Water Management, Restoration, and Extreme Events in Florida Bay

Theresa Strazisar, Christopher Madden, Joshua Linenfelser, Kira Allen, Michelle Blaha, Mark Cook, Fabiola Santamaria

South Florida Water Management District

GEER, April 24, 2025

Florida Bay Inflows (Creek Flow)

Creek inflow

- 5 major creeks
- P gradient ↑ West to ↓ East

Florida Bay Basin Compartmentalization

Nuttle et al., 2000; Briceño et al. 2013 modified

Basin delineations

 Regional and smaller-scale basinlevel organization

Florida Bay Dataflow Mapping (1998-present)

Madden and Day, 1992

— "Dataflow" track

- South of 5 creeks
- Flow-through georeferenced measurements every 5s
- Salinity, temperature, photosynthetic pigments, CDOM, turbidity, O₂ pH

High-Resolution Dataflow Map Interpolations (1998-present)

- Dataflow interpolation area
- <u>inverse path distance</u> <u>weighted honors barriers</u> (Stachelek and Madden, 2015 modified)
- High spatial resolution (60x60m) identifies/ tracks gradients, changes

Florida Bay Event Timeline (1998-2024)

Recurring algal blooms (Synechococcus)

- Periodic disturbances: hurricanes, El Niño/La Niña, drought, cold events, 2023 MHW
- Multi-year disturbances: seagrass die-off 2015-2016, recurring algal blooms
- Water management

Seagrass Die-off Spatial Extent and Subsequent Algal Blooms

High-resolution Baywide Salinity over Time 1998-2024

High salinity years seen baywide

^{• 2007-}present higher salinities

Salinity Spatial Clusters 2007-2024

- Not unexpected
- Cluster based on proximity to inflows
- Highest in northcentral Bay (reaches hypersalinity)
- Dry years hypersalinity all clusters

Wet Season Salinity Spatial Clusters 2007-2024

(May-Oct)

- Cluster based on proximity to inflows
- No distinct northcentral cluster
- Dry years, see shift in nearshore cluster to high salinity = "dry" wet season

Dry Season Salinity Spatial Clusters 2007-2024

(Nov-Apr)

- Cluster based on proximity to inflows retracts
- Transition zone cluster consistently lower
- Northcentral cluster drives overall pattern

Higher Chla after disturbances

^{• 2017} followed sequence of events • Regional differences

Regional Chlorophyll Over Time 1998-2024

Chlorophyll Spatial Clustering 2007-2024

- Highest in mangrove lakes/northcentral bay
- Cluster in die-off area
- Decreases as move East (P-gradient)
- Increase after 2015

Chlorophyll Spatial Clustering Wet Season 2007-2024 (May-Oct)

- Highest in mangrove lakes/ northcentral bay
- Less variability
- Differences mainly after 2015

Chlorophyll Spatial Clustering Dry Season 2007-2024 (Nov-Apr)

- Highest in mangrove lakes/northcentral bay
- Distinct cluster in die-off area
- Decreases as move East
- Increase after 2015

Takeaways

- 1) Salinity is lowest closest to inflows and after storm/climate events
- 2) "Dry" wet seasons
- 3) Phytoplankton is highest in mangrove lakes and dieoff area, follows P-gradient
- 4) Seagrass dieoff critical event lowered resilience and recurrent algae blooms

Contact Information:

Theresa Strazisar tstrazis@sfwmd.gov Christopher Madden cmadden@sfwmd.gov

Acknowledgements:

- Jemma Stachelek
- Fred Sklar
- Carlos Coronado
- Amanda McDonald
- Brad Furman

- Penny Hall
- Past and present Dataflow team members

- Madden, C. and J.W. Day. 1992. An instrument system for high-speed mapping of chlorophyll a and physico-chemical variables in surface waters. Estuaries. DOI: 10.2307/1352789.
- NOAA Centers for Coastal Ocean Science. <u>HAB Data Explorer</u>
- Stachelek, J. and C. Madden. 2015. Application of Inverse Path Distance Weighting for high-density spatial mapping of coastal water quality patterns. Int. J. Geographical Information Science. DOI: 10.1080/13658816.2015.1018833.
- Dataflow interpolation documentation available at https://github.com/jstachelek/onboard-dataflow-processing