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Objective

To develop deep learning-based models to estimate local runoff in the
Caloosahatchee (C43) and St. Lucie (C44) basins to support water release decisions
with projected rainfall and near-term historical runoff as the only predictive
variables.
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Methodology: Training Dataset

Period of Record: 2011-2020 (10 years)

Data: Daily flows at S77, S79, S308, and
S80

Data Source: USACE

Equations for local basin runoff:
C43_Runoff, = max(0, S79,- S77))
C44_Runoff, = max(0, S80, - S308))

Rainfall

Daily rainfall volumes for sub-basins
SFWMD’s Gage-Adjusted Radar Rainfall
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Methodology: Model Development

Exploratory analysis (three approaches)
Recurrent Neural Network (RNN) Recurrent Neural Networks

Deep Learning — Introduction to Recurrent Neural Net

Suitable for timeseries

Hyperparameter Optimization Framework

For each model E
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Methodology: Model Selection

500 Candidate ]
Two phase selection

Models
Phase 1: Based on GOFs for training,
Training Validation validation and testing sub-sets
Phase 2: Model stability and
GOFs performance over long term

Testing
simulation as well as storm events
Performers

Full POR simulation C43: Ensemble of 8 models

w/o
Runoff data

incorporation C44: Ensemble Of 6 mOdels
Stability
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Results: C43 Runoff Long Term.Simulation

10 Year Simulation - no observed runoff data incorporated
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Results: C43 Runoff for Large Storm Event

Hurricane Irma Hurricane lan
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Results: C44 Runoff Long Term. Simulation

10 Year Simulation - no observed runoff data incorporated
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Results: C44 Runoff for Large Storm Event

Hurricane Irma Hurricane lan
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Applications

Two applications

Automated daily model runs — - Weekly LOSOM regulatory release decision
support.
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Conclusions

Runoff estimation models were successfully developed using deep learning technique
(Recurrent Neural Network).

Model for C43 local basin runoff estimation showed very good performance.

Model for C44 local basin runoff estimation is able to capture the runoff dynamics but
overestimates the flows. Further improvements are warranted.

Models were deemed to be useful for near real-time applications, incorporating
guantitative precipitation forecasts to provide perspective on operations for Lake
Okeechobee.

Retrain models once substantial data becomes available after C43 and C44 reservoir
operations start
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Questions
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