

FLORIDA ATLANTIC UNIVERSITY

Harbor Branch Oceanographic Institute

TRANSPORT AND SALINITY BUDGET OF THE FLORIDA BAY

Alfredo Quezada¹, Mingshun Jiang¹, and Abiola Adebiyi²

¹Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, 32946, USA

²Department of Geosciences, Florida Atlantic University, Boca Raton, FL, 33431, USA

Seagrass – The Florida Guidebook

Our motivation

• Florida Bay

- Wide variety of goods and services.
- Poorly quantified salinity budget.
 - Complex bathymetry and transport circulation make balance calculations complicated.
 - Implications for biological cycles.
- Anthropogenic impacts.
 - Direct and climate-related salinity extremes.
 - Comprehensive Everglades Restoration Program (CERP)

Purpose

To develop a high-resolution nested hydrodynamic model within a regional ocean model to better understand the Florida Bay's transport and connectivity throughout its morphologically different regions.

- 1. Improve model performance in capturing transport pathways and connectivity.
- 2. Better understand the processes controlling the salinity in the bay.
- 3. Assess impacts of climate and CERP.

The Regional Ocean Modeling System (ROMS)

- A modeling system originally developed for relatively larger, regional studies (Shchepetkin and McWilliams, 2005).
 - "Free-surface, terrain-following, primitive equations ocean model"
- Highly modular.
 - Used in a wide range of applications.

The Regional Ocean Modeling System (ROMS)

- Model Domain
 - Southern Florida shelf, Florida Straits, northern Cuba coastal region, and the western Great Bahamas Bank.
 - Horizontal grid resolution of 1.5km
 - 35 vertical sigma layers concentrated at the surface.
- Model Forcings
 - Tides
 - ¼° global tidal TPX08 model
 - Water quality (Temperature, salinity, currents, and water levels)
 - 1/12° global HYbrid Coordinate Ocean Model (HYCOM)
 - Sea-surface height
 - HYCOM, corrected using data from the Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) data center.
 - Meteorological forcing
 - 32-km North American Regional Reanalysis (NARR) model
- Numerical schemes for momentum equations:
 - 3rd order upstream scheme for horizontal advection.
 - 4th order centered difference scheme for vertical advection.
- Numerical schemes for tracer equations:
 - 3rd order HSIMT-TVD scheme (Wu and Zhu, 2010).
- Horizontal pressure gradient:
 - Standard parabolic splines density Jacobian.
- Turbulent closure:
 - Mellor-Yamada 2.5 scheme.

Child Grid

- Required specific treatment due to complex bathymetry.
- Higher spatiotemporal resolution
 - 500m resolution can include mudbanks, small islands, and channels.
- Domain covers the greater Florida Bay including the Florida Keys and much of the Florida Reef Tract

Two-Way Nested Model 📏

- Based on previous efforts by Pan et al. (2017) and Jiang et al. (2020).
 - Major improvements:
 - Evaporation and precipitation effects on water level.
 - Revised and more accurate model bathymetry allows inclusion of mudbanks, small islands, and channels.
- 2 different grids

- Parent model ~ 1.5km resolution
- Child (nested) model at 1:3 aspect ratio, ~500m resolution.
 - Shorter baroclinic and barotropic timesteps.
- January 1, 2011 December 31, 2011

Two-Way Nested Model

- Only child model results used for analysis.
 - To identify spatial variability, area was divided into the regions shown to the right.

Model validations

Observations

Monitoring stations from the Everglades National Park Services (ENPS)

In situ temperature and salinity from the South Florida Water Management Districts (SFWMD) efforts (DBHYDRO)

AOML Regional Surveys

Historical Results

Lee et al. (2016) Kelble et al. (2007) Smith and Lee (2002)

Transport and Connectivity

Annual Mean Transport, magnitude(m³/s): 01-Jan-2011 - 31-Dec-2011

Salinity Fluxes

FB Fluxes

18

16

14

2

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Precipitation

-Evaporation

Salinity

Kelble et al. (2007)

Model vs Observations

Everglades National Park Services (ENPS)

Model bathymetry C:\Users\aquezada\Desktop\FSM\ROMS_forcing_inputs\Abiola_forcings\FBDrag_Child_011fric_mudbanksmask.nc

Regional Averages

Salinity budget equations

$$S_{rate} = H_{adv} + H_{diff} + \frac{(E - P)[S]}{density} - \frac{R * [S]}{volume}$$

 S_{rate} = salinity variation rate (/s)

 H_{adv} = Horizontal advective salt fluxes across the boundary (/s)

 H_{diff} = Horizontal diffusive salt fluxes across the boundary (/s)

- (E P) = evaporation minus precipitation (kgm⁻²/s)
- R = river runoff (m³/s)

[S] = time varying and volume-averaged salinity of the domain (psu)

Because the bay is shallow, and with a solid bottom boundary, it is assumed to be well-mixed, and V_{adv} , V_{hdiff} are therefore not considered.

Spring 2011

0.2

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2

saltflux (/day)

Fall 2011

etion to the top of to

0.2

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2

(/day)

Itflux

NC

Conclusions, Limitations, and Future Steps

- We developed a high-resolution hydrodynamic model nested within a regional ocean model, based on ROMS, that can accurately replicate observed hydrodynamics, transport, temperatures, and concentrations.
- Some limitations include:
 - Limited sufficiently high-resolution meteorological data
 - Lack of empirical measurements in parts of the Bay.
 - Variable responses by region due to an incomplete understanding of their drivers.
 - Computational requirements
- Future Steps
 - Further testing of model to increase accuracy modifying internally computed evaporation rate.
 - Implement surface algal vegetation (SAV) cycles (Jiang et al. 2020).
 - Researching the effects of the CERP freshwater reallocation efforts.
 - Testing increased sea level rise and sea surface temperature scenarios.
 - For more on these future steps please refer to our lab's other poster sessions and talks.
 - "Effects of Bottom Morphological Features During Storms: A Case Study of Hurricane Isaac in 2011" by Abiola Adebiyi (Today)
 - "Modeling Seagrass Distributions in the Greater Florida Bay and Impacts of Climate Change" by Dr. Mingshun Jiang (Tomorrow)

References

- Beudin, Alexis, et al. "Development of a coupled wave-flow-vegetation interaction model." *Computers & Geosciences* 100 (2017): 76-86.
- Kelble, Christopher R., et al. "Salinity patterns of Florida Bay." *Estuarine, Coastal and Shelf Science* 71.1-2 (2007): 318-334.
- Lee, Thomas N., et al. "Circulation and water renewal of Florida Bay, USA." *Bulletin of Marine Science* 92.2 (2016): 153-180.
- Nuttle, William K., et al. "Influence of net freshwater supply on salinity in Florida Bay." *Water Resources Research* 36.7 (2000): 1805-1822.
- Pan, C., Jiang, M., Dalgleish, F. R., & Reed, J. K. (2017). Modeling the impacts of the Loop Current on circulation and water properties over the Pulley Ridge region on the Southwest Florida shelf. Ocean Modelling, 112, 48-64.
- Smith, Ned P. "An introduction to the tides of Florida Bay." *Florida Scientist* (1997): 53-67.
- Smith, Ned P., and Thomas N. Lee. "Volume transport through tidal channels in the middle Florida Keys." *Journal of coastal research* (2003): 254-260.
- NOAA Tidal Charts. (<u>CO-OPS Map NOAA Tides & Currents</u>)