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Solute transport
• Impacts agricultural productivity

• Disrupts optimal condition

• Effects of agricultural management 
practices

• Impacts of seawater flooding



Motivation: Soil hydrology 

https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/florida/FL686/0/Dade.pdf

Photo credit: Prof. J. Crane (UF/IFAS)

• Rock plowing 



Motivation: Sea level rise in the past

• A cumulative spatial and temporal SLR by up to 25 cm and 10 cm over 29 years Berihun et al. (under review)



Motivation: Sea level rise in the future

• Sea level along the U.S. coastline is projected to increase by 
25 – 30 cm 

• Flooding: 10x as often as it does today

https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-
report.html



Flooding in South Florida

Photo by: Don Pybas

Photo by Bruce Schaffer

© Miami Herald, 2015 Flooding in Miami-Dade, Florida

• Extreme weather, hurricane, and flooding



Impacts of Seawater flooding

(Hailegnaw et al., 2023&2024)



• Simulate solute transport within saturated soil columns

Objective



Krome

< 2mm 

61cm, ⌀15 cm

Biscayne

Experiment design



Porewater sampling and analysis

• Samples collected at three 
levels

• ICP – OES and segmented 
flow analyzer



Solute transport modeling

Solute transport 
modeling

Hydrus-1D

Machine Learning 
Models



• Water flow, solute and heat transport

• Experiments in greenhouse and actual field setting

• Water flow: Richard’s equation 
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• Solute transport: advection dispersion type of equations
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Hydrus-1D



Boundary conditions
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Soil texture
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• Decision Tree (DT) – regression and classification problems

• Random Forest (RF) – constructs multiple decision trees

• Extreme Gradient Boost (XGB) – powerful to capture non-linear 
relationships

Machine learning algorithms



Seventy percent of the data is used for 
training

Statistical analysis

All statistical analyses are performed in R and 
Python

Model performance evaluation: R2 and RMSE 



• High EC and pH values in freshwater flooded soils 

EC and pH



• High release of Na and Mg in seawater flooded soils 

Na and Mg concentrations



• High release of Ca and NH4-N in seawater flooded soils 

Ca and NH4-N concentrations



Sodium Transport modeling in Krome soil

R2 = 0.77, RMSE=0.44 mg cm-3 R2 = 0.59, RMSE=1.44 mg cm-3 



Sodium transport modeling in Biscayne soil

R2 = 0.75, RMSE=0.17 mg cm-3 R2 = 0.55, RMSE=0.96 mg cm-3 



Magnesium transport modeling in 
Krome soil

R2 = 0.85, RMSE=0.17 mg cm-3 R2 = 0.81, RMSE=0.29 mg cm-3 



Magnesium transport modeling in 
Biscayne soil

R2 = 0.94, RMSE=0.09 mg cm-3 R2 = 0.77, RMSE=0.34 mg cm-3 



XGB
R2: 0.64
RMSE: 1145.4 mg l-1

RF
R2: 0.67
RMSE: 1101.8 mg l-1

DT
R2: 0.7
RMSE: 1049.2 mg l-1

Na

XGB
R2: 0.84
RMSE: 181.2

DT
R2: 0.56
RMSE: 251.4 mg l-1

RF
R2: 0.63
RMSE: 232.9 mg l-1

Mg

DT
R2: 0.56
RMSE: 133.9 mg l-1

RF
R2: 0.69
RMSE: 112.6 mg l-1

XGB
R2: 0.69
RMSE: 112.1

K

ML models



DT
R2: 0.68
RMSE: 0.4 mg l-1

RF
R2: 0.71
RMSE: 0.4 mg l-1

XGB
R2: 0.79
RMSE: 0.3 mg l-1

P

XGB
R2: 0.72
RMSE: 0.5 mg l-1

DT
R2: 0.56
RMSE: 0.7 mg l-1

RF
R2: 0.65
RMSE: 0.6 mg l-1

TP

DT
R2: 0.39
RMSE: 26.7 mg l-1

XGB
R2: 0.53
RMSE: 24.9 mg l-1

RF
R2: 0.57
RMSE: 22.5 mg l-1

NH4-N

RF
R2: 0.65
RMSE: 1095.1 mg l-1

DT
R2: 0.7
RMSE: 1009.9 mg l-1

XGB
R2: 0.82
RMSE: 809.8 mg l-1

Ca

ML models



Conclusion

Sea water flooding increased 
concentrations of Na, Ca, 
NH4-N, P, and TP

Machine learning algorithms 
outperformed Hydrus-1D in 
simulating all solutes 

Hydrus-1D simulated 
transport of Na and Mg 

Machine learning models can 
be used to understand the 
transport and fate solutes 
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