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Science Informed Public Policy: New Paradigm

« Complexity of climate change ->
multidimensional approach that
encompasses environmental
considerations, social, economic, and

often political factors in a nonstationary SoEEl
environment o Equitable
* Navigating Deep Uncertainties is
crucial: Sustainable
.. : i Economic
» Decision Making Under Deep Environment

Uncertainty (DMDU)

 Need to balance short-term interests

with long-term sustainability
Dynamically Evolving



Stressors:

Outlook of Future Conditions

Rising Temperatures
Sea Level Rise &

Storm Surge r/’.:\\ &
Saltwater intrusion Eﬁ\\51

Rising groundwater
levels

Changes in rainfall .
patterns . - e, e

Frequency and
magnitude
Hurricanes



Potential Impacts of Climate Change on
Water Resources (Florida)

Quartet of change:
Drivers’

Water Management
Impacts

*Rising Sea Levels
9 *Direct landsca
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Temperature (& ET)

Changing Rainfall
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extremes)

*Tropical Storms &
Hurricanes
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Future Conditions
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Stationarity vs. Nonstationarity

(a) Stationary (b) Nonstationary
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» “The scientific term “stationarity” does not » In nonstationary systems the past is not a key
necessarily mean constancy of variables. to the future. But, there are useful lessons that
What it does mean is constancy of laws and can be learnt from the past.
patterns”.

» Dynamic “Return Period”
» Stationarity can be interpreted as the rule
“the past is a key to the future.”

> Fixed “Return Period”



Hydrologic Design considering Nonstationarity
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Techniques for assessing water infrastructure for
nonstationary extreme events: a review

J.D. Salas, J. Obeysekera & R. M. Vogel




Climate Projection Uncertainties

 Case of Deep uncertainty
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Cone of Uncertainty
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Decision Making: Spectrum of Uncertainties

Ignorance

Clear enough Alternate Selected Many Unknown future
Future Futures (with  plausible plausible
probs) futures futures
(Scenarios)

#
v - ~(O-
' v
Short-term Tools of Few system Lack of data; Only know we
decisions statistics models many models  do not know

Simple Probability of  Traditional Wide range of
Sensitivity outcomes Scenario outcomes
Analysis Planning

Adopted from

Marchau et al. Deep Uncertainty
(2019)




Decision Scaling Concepts

Selected Methods of

DMDU

e Robust Decision Climate/Weather Generator Hydrolg_gif Mode Wat. Res. el
Making (RBM)
pioneered by RAND

* Decision Scaling
(“bottom-up
approach”)-Casey
Brown

 Dynamic Adaptive
Policy Pathways
(DAPP) developed by
Deltares, The
Netherlands

Climate Vulnerability }—_ i

A Robust




Change in Temperature (C)

Example: Greater Everglades
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Dynamic Adaptive Pathway Concept (DAPP)

Action A

Current
situation

Action C
Action D
Changing conditions -
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o Transfer station to new policy action A Adaptation signal
' Adaptation Tipping Point of a policy action (Terminal ) 0 Decision node

o Policy action effective

Example: Little River Basin

Level II: Portfolio of
Measures

MO - No action

M1 - Local flood mitigation: flood walls,
exfiltration trenches, flap gates, and local pumps

M2 - Regional flood mitigation: forward pumps
at S-27 coastal structure (small & large pumps)

M3 - Land-use mitigation: raise roads and
buildings to 6, 7 or 8 feet elevation
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Revisiting Risk Under Nonstationarity

San Francisco, CA

1.0

Risk
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0.4

0.2

0.0

<-— Risk-based Design

—— Stationary( 50 yrs)
—— Non-Stationary
— Design( 167.6 yrs)

0 20 40 60
— Design Life

* Under stationarity risks increase

with Design Life

e Risks increase faster due to

nonstationarity but that
depends on the scenario

* Phase in adaptation in stages. In

this case, reassess after 30 year.
Flexible plan and design



ADOPT A SYSTEM'S APPROACH

] A\ e
(TG

\) ﬁ‘\) e

-
S

AR o
- (N RN W TSt
~ U= e
S o < 1Y .= -/ N
NELLHR P T
B 7
e\ > | T
e\ = 4
e X - / or
SRl N\
= ,-

Five Resilience Principles
S

»Adopt a system’s approach;
»Look at beyond-design events;

>Build and prepare infrastructure\ =7

according to ‘remain functioning’

»Increase recovery capacity by looking
at social and financial capital; and \

»Remain resilient into the future
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DESIGN AND PREPARE SySTEMS ACCORDING
To THE REMAIN-FUNCTIONING' PRINCIPLE

Credit: Bruijn et al. 2017






Impacts are already here!
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