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Science Informed Public Policy: New Paradigm
• Complexity of climate change -> 

multidimensional approach that 
encompasses environmental 
considerations, social, economic, and 
often political factors in a nonstationary 
environment

• Navigating Deep Uncertainties is 
crucial:

• Decision Making Under Deep 
Uncertainty (DMDU)

• Need to balance short-term interests 
with long-term sustainability

Dynamically Evolving



Outlook of Future Conditions
Stressors:
• Rising Temperatures
• Sea Level Rise & 

Storm Surge
• Saltwater intrusion
• Rising groundwater 

levels
• Changes in rainfall 

patterns
• Frequency and 

magnitude 
Hurricanes

Biscayne 
Bay
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Potential Impacts of Climate Change on 
Water Resources (Florida)

Quartet of change:
Drivers*

•Rising Sea Levels 
(& groundwater 
levels)

•Increasing 
Temperature (& ET)

•Changing Rainfall 
(both averages & 
extremes)

•Tropical Storms & 
Hurricanes

Water Management
 Impacts

•Direct landscape 
impacts (e.g. storm 
surge)
•Water Supply
(e.g., saltwater 
intrusion)
• Flood Control
(e.g. urban flooding)
•Natural Systems
(e.g. ecosystem 
impacts, both 
coastal and interior)

* Natural and Human-Induced 4
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Stationarity vs. Nonstationarity
(a) Stationary (b) Nonstationary
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 In nonstationary systems the past is not a key 
to the future. But, there are useful lessons that 
can be learnt from the past.

Dynamic “Return Period”
 

 “The scientific term ‘‘stationarity’’ does not 
necessarily mean constancy of variables. 
What it does mean is constancy of laws and 
patterns”.

 Stationarity can be interpreted as the rule 
‘‘the past is a key to the future.’’

 Fixed “Return Period”



Hydrologic Design considering Nonstationarity
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Risk-Based Design

Recurrent Flood 
Frequency

Expected 
Waiting Time
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Climate Projection Uncertainties
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Scenarios (2081-2100)

GCM
(IPCC, 
2007)

Statistical

Dynamical

RCP2.6 RCP4.5 RCP6.0 RCP8.5

0.3-1.7 (○C) 1.1-2.6 (○C) 1.4-3.1 (○C) 2.6-4.8(○C)

0.26-0.55 
(m)

0.32-0.63 
(m)
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(m)

0.45-0.82 
(m)
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Implications in 
Water Resources 
Investigations:
• Scenario based 

approaches
• Use all models
• Model Culling?

CGHR
CGMR
CNCM3
CSMK3
ECHOG
FGOALS
GFCM20
GFCM21
GIAOM
INCM3
IPCM4
MIHR
MIMR
MPEH5
NCCCSM
NCPCM

• Case of Deep uncertainty
• DMDU
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Deterministic Level-2 Level-2 Level-3 Level-4 Total 
Ignorance

Clear enough 
Future

Alternate 
Futures (with 
probs)

Selected  
plausible 
futures 
(Scenarios)

Many 
plausible 
futures

Unknown future

Short-term 
decisions

Tools of 
statistics

Few system 
models

Lack of data; 
many models

Only know we 
do not know

Simple 
Sensitivity 
Analysis

Probability of 
outcomes

Traditional 
Scenario  
Planning

Wide range of 
outcomes

Deep Uncertainty

Decision Making: Spectrum of Uncertainties

Adopted from
Marchau et al. 
(2019)



Decision Scaling Concepts
Selected Methods of 
DMDU
• Robust Decision 

Making (RBM) 
pioneered by RAND

• Decision Scaling 
(“bottom-up 
approach”)-Casey 
Brown

• Dynamic Adaptive 
Policy Pathways 
(DAPP) developed by 
Deltares, The 
Netherlands



Change in Precipitation (%)

Example: Greater Everglades

Change in Precipitation (%)



Current 
situation

Action A
Action B

Action C
Action D

Transfer station to new policy action

Adaptation Tipping Point of a policy action (Terminal )
Policy action effective

Changing conditions

Time high-end scenario

Time low-end scenario
0

0 10 70 80 90 100
Years

10 70 80 90 100

Adaptation signal

Decision node

Dynamic Adaptive Pathway Concept (DAPP)
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Revisiting Risk Under Nonstationarity

• Under stationarity risks increase 
with Design Life

• Risks increase faster due to 
nonstationarity but that 
depends on the scenario

• Phase in adaptation in stages. In 
this case, reassess after 30 year. 
Flexible plan and design
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Risk-based Design



Five Resilience Principles
Adopt a system’s approach;
Look at beyond-design events;
Build and prepare infrastructure 

according to ‘remain functioning’
Increase recovery capacity by looking 

at social and financial capital; and
Remain resilient into the future

Credit: Bruijn et al. 2017
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Fort Lauderdale Airport Key Largo 

Everglades

Impacts are already here!

Aging Infrastructure


Gomez, Bernardo
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