Dynamically Resilient Water Resources Systems in an Environment of a Nonstationary Climate

Jayantha Obeysekera ('Obey'), Ph.D.,P.E. Director and Research Professor Sea Level Solutions Center Institute of Environment

> April 23, 2025 GEER 2025

Web: https://environment.fiu.edu | http://slsc.fiu.edu Facebook: @FIUWater | Twitter: @FIUWater





### **Science Informed Public Policy: New Paradigm**

- Complexity of climate change -> multidimensional approach that encompasses environmental considerations, social, economic, and often political factors in a <u>nonstationary</u> <u>environment</u>
- Navigating <u>Deep Uncertainties</u> is crucial:
  - Decision Making Under Deep Uncertainty (DMDU)
- Need to balance short-term interests with long-term sustainability



### **Dynamically Evolving**

# **Outlook of Future Conditions**

Stressors:

- Rising Temperatures
- Sea Level Rise & Storm Surge
- Saltwater intrusion
- Rising groundwater levels
- Changes in rainfall patterns
- Frequency and magnitude Hurricanes



## Potential Impacts of Climate Change on Water Resources (Florida)



## **Future Conditions**

#### Plausible Range of 2100 Global Sea Level Rise **IPCC AR6 Projections** Sea Level Scenarios High High Intermediate High SSP5-8.5 + LC Processes SSP5-8.5 1.0 m Intermediate SSP3-7.0 SSP2-4.5 SSP1-2.6 Intermediate Low 0.5 m SSP1-1.9 Low 0.3 m

### High Tide Flooding

Sea Level Rise





### **Seasonality**



### **Tropical Systems**



#### **Temperature**



## Stationarity vs. Nonstationarity



- "The scientific term "stationarity" does not necessarily mean constancy of variables. What it does mean is constancy of laws and patterns".
- Stationarity can be interpreted as the rule "the past is a key to the future."
- ➢ Fixed "Return Period"

(b) Nonstationary



- In nonstationary systems the past is not a key to the future. But, there are useful lessons that can be learnt from the past.
- Dynamic "Return Period"

## Hydrologic Design considering Nonstationarity



Techniques for assessing water infrastructure for nonstationary extreme events: a review

J. D. Salas, J. Obeysekera & R. M. Vogel

# **Climate Projection Uncertainties**



- Case of Deep uncertainty
- DMDU



Marchau, V. A. W. J., W. E. Walker, P. J. T. M. Bloemen and S. W. E. Popper (2019). <u>Decision Making under Deep Uncertainty:</u> <u>From Theory to Practice</u>, Springer.

### **Cone of Uncertainty**



### **Decision Making: Spectrum of Uncertainties**

| Deterministic                            | Level-2                           | Level-2                              | Level-3                                         | Level-4                      |                             | Total     |
|------------------------------------------|-----------------------------------|--------------------------------------|-------------------------------------------------|------------------------------|-----------------------------|-----------|
|                                          | Clear enough<br>Future            | Alternate<br>Futures (with<br>probs) | Selected<br>plausible<br>futures<br>(Scenarios) | Many<br>plausible<br>futures | Unknown future              | Ignorance |
|                                          | <b>↓</b><br><b>↓</b>              |                                      |                                                 |                              |                             |           |
|                                          | Short-term<br>decisions           | Tools of<br>statistics               | Few system<br>models                            | Lack of data;<br>many models | Only know we<br>do not know |           |
|                                          | Simple<br>Sensitivity<br>Analysis | Probability of outcomes              | Traditional<br>Scenario<br>Planning             | Wide range of outcomes       |                             |           |
| Adopted from<br>Marchau et al.<br>(2019) |                                   |                                      |                                                 | Deep Uncer                   |                             |           |

# Selected Methods of DMDU

- <u>Robust Decision</u>
  <u>Making (RBM)</u>
  pioneered by RAND
- <u>Decision Scaling</u> ("bottom-up approach")-Casey Brown
- <u>Dynamic Adaptive</u>
  <u>Policy Pathways</u>
  <u>(DAPP)</u> developed by
  Deltares, The
  Netherlands

## **Decision Scaling Concepts**



## **Example: Greater Everglades**



T27 Flow (KAF) - for illustration



T27 Flow (KAF)

Change in Precipitation (%)

## **Dynamic Adaptive Pathway Concept (DAPP)**



### **Example: Little River Basin**

#### Level II: Portfolio of Measures

- M0 No action
- M1 Local flood mitigation: flood walls, exfiltration trenches, flap gates, and local pumps
- M2 Regional flood mitigation: forward pumps at S-27 coastal structure (small & large pumps)
- M3 Land-use mitigation: raise roads and buildings to 6, 7 or 8 feet elevation









## **Revisiting Risk Under Nonstationarity**



- Under stationarity risks increase with Design Life
- Risks increase faster due to nonstationarity but that depends on the scenario
- Phase in adaptation in stages. In this case, reassess after 30 year.
   Flexible plan and design

# **Five Resilience Principles**

- Adopt a system's approach;
- Look at beyond-design events;
- Build and prepare infrastructure according to 'remain functioning'
- Increase recovery capacity by looking at social and financial capital; and
- ➢Remain resilient into the future





AND PREPARE SYSTEMS ACCORDING TO THE REMAIN-FUNCTIONING' PRINCIPLE







Credit: Bruijn et al. 2017





## Impacts are already here!

