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Organic P in the Everglades STAs

• STA outflows meet strict 
TP limits (WQBEL)

• Outflow TP is low, 
primarily organic P, 
inorganic P below 
detection limits1

• All organisms need 
inorganic P, scavenge with 
phosphatase enzymes2

Inorganic P and organic P compounds
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P Cycling in the Everglades STAs

• Rapid microbial processes (periphyton, 
phytoplankton) dominate short-term P 
cycling where P concentrations are 
low1

• P cycling important but poorly 
understood

• SAV – submerged aquatic vegetation 
EAV – emergent aquatic vegetation

EAV (Typha spp.)

SAV (Chara spp.)
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Why Further Investigation is Needed

• Phosphatase activity differs from 
inflow to outflow, between SAV and 
EAV areas1

• STA-3/4 pilot study: some 
differences in P metabolism genes 
between SAV and EAV periphyton2

• Further understanding is needed

• Differences in potential for SAV and 
EAV periphyton to use different 
organic P forms?

Periphyton on SAV (Chara spp., right) 
and on EAV (Typha spp., left)
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Study Objectives

• Compare SAV and EAV periphyton community functions

• Understand periphyton’s effect on P cycling

• Evaluate spatial (2 sites) and temporal (wet and dry season) 
dynamics of community diversity and functional potential
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Field Work: Bimonthly Sampling

• Dec. 22’-Nov. 23’ from two sites (mid-flow site 
D112 and outflow site D139)

• Surface water nutrients samples1

• Temp, pH, depth, TP, TDP, SRP, dCa, NH3-N, NOx-N, 
TN

• Phosphatase enzyme activity (APA - alkaline 
phosphatase; PDE - bis-phosphodiesterase)

• DNA (and RNA) samples1

• Metagenomics: total DNA of microbial community
• Metatranscriptomics: total RNA of microbial 

community

• Microscopic algal ID periphyton samples1

• Cells/surface area on SAV and EAV

Site map of STA-2 sampling sites. Cell 4 receives inflow from Cells 5 and 6, 
and water discharges from Cell 4. Arrows show flow direction. 
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7Metagenomic/metatranscriptomic sequencing

Extract DNA

Extract RNA

Fragment Sequence

GCGCTAGTTCATAAAT
GCTATACGGATATCGG

CTAAAATGCG

Annotate taxonomy

Annotate function

Analyze

PERMANOVAGCGCTAGTTCATAAAT
GCTATACGGATATCGG

CTAAAATGCG



Microcosm Experiments
• Dry season (March), wet season 

(August) using live material from 
D139

• Dosed daily over 96 hrs. at 5x 
average DOP values from D1391

• 2 control aquaria

• 2 monoP aquaria: Disodium-α-
glycerophosphate

• 2 diesterP aquaria: refined lecithin

• March: 0.0375 mg P/L

• August: 0.0275 mg P/L

SAV example EAV example

SAV Control

SAV MonoP
SAV MonoP

SAV DiesterP

SAV DiesterPEAV DiesterP

EAV DiesterP

EAV MonoP
EAV MonoP

EAV Control

EAV ControlSAV Control

(Top) Mesocosm setup showing treatment and plant type . (Bottom) example of SAV and EAV aquaria
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Field Prokaryotic Community Differences: Field SAV vs. 
EAV

• Communities did not cluster as 
established wet/dry season, 
rather: dry = Dec-Apr, wet = Jun-
Nov

• Strongest differences with communities 
was with season

• SAV and EAV communities 
differed at D112 and not D139 
(PERMANOVA, p<0.05)

PCoA diagrams using Bray Curtis dissimilarity for prokaryote community and total functional annotations.
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Field Differences in Composition of P genes: 
SAV vs. EAV

• Differences in P genes between SAV and 
EAV at D112 (PERMANOVA, p<0.05)

• Dry season:
•  SAV = P storage (green) 

• EAV = phosphonate metabolism (red)

• Wet season:
•  SAV = phosphonate metabolism (red) and 

diesterP utilization (purple)

Log2fold change of estimates of coefficients from MaAsLin2 output, 
where only significant differences were plotted. 
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Microcosm SAV vs. EAV

• SAV and EAV communities 
differed without regard to 
treatment (PERMANOVA, 
p<0.05)

• Live material from D139

• Little differences in expression 
or algal community with 
treatment 

PCoA diagrams using Bray Curtis dissimilarity for algal community, 
prokaryote community, and total functional annotations.
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Differences in P gene 
Activity: SAV vs. EAV 

• Differences in P gene expression between SAV and EAV (PERMANOVA, p<0.05)
• EAV = phosphonate metabolism (red)
• SAV = P storage (green), inorganic P transport (blue)
• Genes related to diesterP utilization (purple) differentially expressed in SAV or EAV 

Log2fold change of estimates of coefficients from 
MaAsLin2 output, where only significant differences 

were plotted. 
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Phosphatase Activity Higher in March SAV Microcosms

• Enzyme activity (APA, PDE) greater in SAV aquaria in March
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SAV/EAV Can Use Different P Forms

• Inorganic P uptake, P storage 
more expressed in SAV 
periphyton1

• Inorganic P freed from organic 
P via enzyme activity 

• Phosphonate metabolism 
expressed more in EAV 
periphyton

• Phosphonates not detected in 
STA surface waters, EAV 
periphyton may scavenge P 
from surrounding biomass2 Graphical abstract showing inorganic P uptake and storage by SAV, and phosphonate 

uptake by EAV.

Phosphonate
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• SAV and EAV field samples differ at D112 and not 
D139 

• Higher P at D112, seasonal differences in nutrients at D1121

• SAV and EAV differ in microcosms (D139 material)

• Both macrophytes needed to process diversity of 
organic P molecules

• Mixed marsh conditions could be most effective for P 
removal at both sites

Structural differences between SAV and EAV leaves 
influences community composition.

Differences in Gene Composition of Periphyton from SAV 
and EAV Supports Mixed Marsh
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Conclusions
Mixed marsh conditions could be best for P removal in the STAs because of differences in 

P metabolism genes and activity between SAV and EAV periphyton

Megan Feeney: mefeeney@fgcu.edu

Questions?
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