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Introduction:
Wetlands such as the Everglades are considered sinks for atmospheric carbon 
dioxide (CO2) and sources for water vapor and methane emissions (CH4). In 
this study, the magnitude and seasonality of CO2 uptake, water vapor (ET) flux, 
and CH4 emissions were defined using ensembles of machine learning 
models combined with a unique decadal record of water, energy, and 
biogeochemical cycling measured from one eddy-covariance (EC) flux station 
located in an area of dwarf cypress and sawgrass wetlands. ET, CO2 flux, and 
CH4 flux all can be used as the indicators of ecosystem health and are critical 
to understanding the status of the Greater Everglades Ecosystem.

Figure 1: Dwarf Cypress Station.Methods:
• The study area is located at the Dwarf Cypress flux station off Loop Road 

within Big Cypress National Preserve in South Florida (Figures 1 and 2).
• EC measurements of ET were made from April 2007 to December 2024.
• Measurements of CO2 and CH4 were made from December 2012 to 

December 2024. 
• CO2 was used to calculate Net Ecosystem Exchange (NEE)

• ET, NEE, and CH4  fluxes were computed using eddy-covariance method 
(Dyer, 1961; Tanner and Greene, 1989).

• Net radiation, air temperature, soil temperature, relative humidity, and 
vertical wind velocity were used to calculate latent heat.

Figure 2: Map of Dwarf Cypress station location.

Results:
• Machine learning tools can accurately forecast broad 

seasonal trends.
• Forecasting can define hard to see trends in data.
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Discussion:
• Gap filling and forecasting technology can be incredibly useful for times when there are equipment failures and data gaps.
• Machine learning can discern minor trends and then can accurately depict them (decrease of latent heat at beginning of rainy 

season Figure 3).
• Machine learning can accurately predict well defined seasonal trends (Figures 4 and 5).
• Caution should be taken as forecasting has trouble predicting unusual events.
• Major storm events or an extended drying periods present forecasting issues.

Relatively cold and dry = ↓ CH4 emissions 

Hot and wet = ↑ CH4 emissions 

Forecasted CH4 Values

Measured and Forecasted Values of Latent Heat
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Figure 3: Measured and predicted values of latent heat.

Forecasted NEE Values

Figure 4: Forecasted trends of CH4 emission. Figure 5: Forecasted values of NEE.
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