Presentation to:
Conference Ecological and Ecosystem Restoration

Restoring Fish Passage on Whitemarsh Run

July 30, 2014
Outline

• Background on Mitigation Project

• Design History
 – Assessment
 – Concepts & Agency Feedback

• Final Design
 – Design Constraints
 – Overview
Mitigation History

- I-95 Express Toll LanesSM
- 8-mile segment of I-95 = Section 100
 - 12,199 linear feet of streams impacted
 - 2.89 acres of wetlands impacted
 - Mitigation achieved at King Avenue Mitigation Site and Whitemarsh Run Mitigation Site
Mitigation History

• Whitemarsh Run
 – Coastal plain sand and gravel-bedded stream located in Baltimore County, Maryland
 – Geomorphic assessment included:
 • Stream gage installations
 • Discharge and bedload measurements during storm events
 • Sediment transport modeling
 • Baseflow analysis
Mitigation History

• Whitemarsh Run Mitigation Site
 – 183.6 acres containing streams, forest, and wetlands
 – Proposed mitigation
 • Vernal pool creation
 • Invasive species management
 • Floodplain, upland, and wetland preservation
 • Streambank stabilization
 • Fish passage restoration
Whitemarsh Run Mitigation Site

- Urbanized 13.5-mi² watershed
- History of gravel mining
- Upstream restoration projects have had varying success
- Straughan measured large bedload supply to downstream reaches
Whitemarsh Run Mitigation Site

• Initial mitigation goals
 – Replace the functions and values of the wetlands and streams unavoidably impacted by the Section 100 project
 – Preserve, enhance, and create wetlands and forest
 – Restore Whitemarsh Run to a geomorphically stable dimension, pattern, and profile that transports the sediment and water of the watershed without further aggradation or degradation
Whitemarsh Run Design Process

- Initial concept design
 - Natural channel design
 - Use reference reach to design stable Bc channel
 - Reconnect floodplain
 - Remove riprap and concrete
 - Provide grade control
 - Create emergent and oxbow wetlands
 - Control Phragmites
Whitemarsh Run Design Process

• Limitations of initial concept design
 – Client and review agencies were wary of traditional stream restoration design due to restoration history in Whitemarsh Run watershed
 – Viewed as cost-prohibitive
 – Wells indicated that existing groundwater elevation was too low at proposed wetland creation site
 – No mitigation credit to be provided for oxbow wetlands
 – Ground penetrating radar and soil analysis indicated 10 to 20 feet of waste concrete and diesel fuel contamination southeast of US 40 crossing
Other concept stream designs

- Shallow braided stream through wetlands
 - Suspended sediment and nitrogen removal
 - Fish passage may be limited
 - Gravel aggregation expected
 - Historical images and topo maps suggest stream is naturally single-threaded
Whitemarsh Run Design Process

- Other concept stream designs
 - Valley plugs to form distributary channels
 - Estimated ability to store 37K tons of sediment over a 7-year period
 - Similar concept recommended by peer reviewer
 - Fish passage may be concern
 - Future stability uncertain
Whitemarsh Run Design Process

- Other concept stream designs
 - In-situ enhancement
 - Limited bank grading
 - Fish ladder required
 - No sediment storage
 - Improvements at BGE right-of-ways not possible
Whitemarsh Run Design Process

• Other concept stream designs
 – Bypass channel
 • Bypass solely for fish passage at baseflow
 • Primary channel below structural spillway for bedload transport and high discharge conveyance
 • Bypass channel may aggrade and require maintenance
• Revised Goals
 – Primary Objectives
 • Carry out wetland creation, enhancement, preservation, and restoration activities at selected locations
 • Manage Phragmites and Bittersweet
 • Protect existing infrastructure
 • Stabilize stream banks at selected locations
 • Improve fish passage for selected anadromous species at the Route 40 culvert
 – MDE and NOAA/NMFS recommended a rock riffle grade control structure
Whitemarsh Run Riffle Grade Control

- Riffle grade controls installed successfully at other Maryland coastal plain streams
- 5-foot vertical barrier at Whitemarsh Run
- Alewife is the weakest target anadromous fish
 - Baseflow must be at least 9 inches deep and less than 3 ft/s to provide passage
Whitemarsh Run Riffle Grade Control

• Design constraints:
 – Minimum Spring baseflow depth = 9 in
 – Maximum Spring baseflow velocity = 3 ft/s
 – Structural stability during the 10- and 100-year discharges
 – Competence and capacity to transport existing bedloads
 – Maintenance of the existing floodplain elevation along U.S. 40
 – Strict grading limitations due to measured diesel fuel soil contamination and utility right-of-ways
Whitemarsh Run Riffle Grade Control

- Iterative design
 - Stone size and gradation determine roughness at baseflow
 - Which determines baseflow depth and velocity
 - Slope and cross-sectional parameters drive:
 - Baseflow depth and velocity and
 - Required stone sizes for structural stability at 10- and 100-year storms, which must be available stone sizes
 - Bedload competence and capacity determined with models including iSURF
 - Final depths, velocities, and floodplain elevations modeled with HEC-RAS
Riffle Grade Control

- Plunge pool downstream of U.S. 40 and downstream of RGC
- Loosely follows the existing stream alignment to maximize length (1,407 ft)
- Slope = 0.0092 (0.92 %), 3X existing stream slope
- Contains refugia boulders to provide fish resting areas
Whitemarsh Run Mitigation Site

• Mitigation proposed at Mitigation Site
 – Plunge pools and riffle grade control structure
 – Streambank stabilization (338 ft, reducing erosion by an estimated 362 ton/yr)
 – Wetland enhancement (3.2 ac) and preservation (43 ac)
 – Vernal pool construction (3.3 ac)
 – Invasive species eradication (14.6 ac)
 – Reforestation (1.3 ac)
 – Native plantings

• Total estimated construction cost = $4.86M

• Construction underway!