Estimating Benefits of Hydrologic Restoration and Freshwater Introduction Projects in Coastal Wetlands

Ron Boustany
USDA/Natural Resources Conservation Service
Lafayette, LA

CEER 2014
Based on O'Neil 1949, Gosselink 1984, Sasser 1994, Swarzenski et al. 2008
Annual Land Change Rates

Prograding (Land Gain)

Degrading (Land Loss)

Inputs = organic + mineral accretion; Outputs = subsidence + erosion + SLR
NSED2 Model: Calculates a benefit from nutrient and sediment introduction.

SPROD2 Model: Calculates benefit from reduction in salinity.

Salinity Reduction

In situ Organic Production

- **Export**
- **Denitrification**
- **Burial (Immobilization)**

Organic soil fraction

Mineral soil fraction

Export

Nutrients

Sediment
Patterns → Consistency → Predictability → Model

“remarkably constant”

Gosselink et al. 1984
About 0.026 g cm\(^{-3}\) organic carbon in all soils

* Nyman et al. 1990, Hatton et al. 1983
** Faulkner and Poach 1996
Bulk Density = 0.16 g cm\(^{-3}\) (Brackish Marsh)

% Organic = 16.25%

Organic Fraction = BD * % Organic

Organic Fraction = 0.16 * 0.1625 = 0.026 g cm\(^{-3}\)

Production Rate (PR) = 2653 g m\(^{-2}\) y\(^{-1}\)

= 0.2653 g cm\(^{-2}\) y\(^{-1}\)

= 0.2653 g cm\(^{-3}\) y\(^{-1}\) (at 1 cm depth)

% of Production in BD = (Organic Fraction)/(PR)

(0.16 g cm\(^{-3}\))*(0.1625) ÷ (0.2653 g cm\(^{-3}\)) = 9.8%
% Maximum Productivity

Salinity (ppt)

Reproduced from Snedden and Swenson 2012
Central Terrebonne Freshwater Enhancement Project (TE-66)

Project Area – 48,446 acres
19,421 acres wetland
29,025 acres water

Loss Rate = -0.46%/y
(89.3 acres/y)
Problem:
Expanded breach in historic ridge that allows for more direct transfer of higher saline gulf marine waters to penetrate deep into the upper Central Terrebonne fresh and intermediate marshes.

Goals:
Reestablish historic hydrologic and salinity conditions by reducing the intrusion of gulf marine waters via the Grand Pass into the Central Terrebonne marshes.

Solution:
Construction of rock barge bay in pass to reduce 900 ft wide x 37 ft deep opening by 90% to 150 ft x 16 ft.

Model: SPROD2 (STELLA 10.0.4)
SPROD2 Model – Calculates the benefits of salinity reduction from freshwater introduction and/or structural features.
Module 1- Salinity Dilution Box Model
Calculates the percent difference in salinity with the project.
Module 2 – Marsh production factor calculator
Calculates the percent difference in production within each marsh zone.

Example of brackish marsh results.
Module 3-Land Change Calculators
Calculates the acres of land benefit within each marsh zone based upon the increase in organic production from salinity reduction.
SPROD2
Salinity/Production Model

Annual Net Change Calculator

Annual Land Loss Reduction Percent Calculator

- **14.3% reduction in land loss rate**
- **233 net acres in 20 yrs**

Land Loss Spreadsheet

- **Annual Land Loss Reduction Percent**
 - **ANNUAL LLR PERCENT | 0.143096**

Annual Net Change

- **ANNUAL NET CHANGE | 12.12**
Cameron-Creole Freshwater Introduction Project (CS-49)

Project Area = 22,240 acres
7,659 acres wetland
14,581 acres water

Loss Rate = -0.76%/y
(58.2 acres/y)
Problem:
Experiencing increased tidal exchange, saltwater intrusion, and reduced freshwater retention associated with the Calcasieu Ship Channel and the GIWW. Also recently impacted by hurricanes.

Goals:
The project would restore the function, value, and sustainability to approximately 22,247 acres of marsh and open water.

Solution:
Construction of ten 48-inch culverts in the bank of the GIWW to establish freshwater flow from the GIWW into the Cameron-Creole marshes.

Model: NSED2 (STELLA 10.0.4)
NSED2
Nutrient/Sediment Model
Nutrient Module: calculates the acres of benefit from increase in nutrients.
Sediment Module: calculates the acres of benefit from increase in sediments.
Annual Net Change and Land Loss Reduction Percent Calculators

156 net acres in 20 yrs
Conclusions

• Desktop modeling has allowed us to quantify benefits of introducing nutrients, sediments and lowering salinities in a way that allows equitable comparison to all project types.

• By quantifying the benefits of nutrient, sediment and salinity reduction, we are able to provide estimates of cost/benefit to allow decision makers to make more informed decisions in selecting projects for funding.
Questions?

Weeds or Organic Production?