Strategic Use of Ecological Production Functions to Advance Policy

Christina Wong, Bo Jiang, Ann Kinzig, Kai Lee, and Zhiyun Ouyang
A Community on Ecosystem Services Meeting
Jacksonville, Florida
December 7, 2016

Outline

I. Introduction

- Policy Demands for Ecosystem Service Assessments
- Technical Problem Defining Data Gap

II. Interdisciplinary Framework

- Ecological Production Functions
- 10-Step Approach for Measuring Ecosystem Services

III. Implementing Ecological Production Functions

- Yongding River Ecological Corridor, Beijing, China
- Methodology
- Results
- Management Recommendations

IV. Conclusions

Lessons Learned

Policy Demands

- More than \$12 billion USD invested in watershed services in 2013, growing at an average rate of 12% per year.
- China, European Union, and US government agencies are pursuing ways of implementing the ecosystem services approach.

Capacity Challenges

<u>Technical Problem</u>: Lack of analytical frameworks to measure and evaluate ecosystem services for policy.

<u>Challenge</u>: Integrative thinking needed to overcome disciplinary barriers to address the data gap, which is impacting implementation.

Ecological Production Functions: Measurement

10-Step Approach

Yongding River Ecological Corridor

Large-scale Green Infrastructure: Seven lakes and wetlands as network of parks to advance socioeconomic conditions and urban livability.

Policy Objective: Enhance Five Ecosystem Services

- 1. Water Storage: Increase Groundwater Storage
- 2. Local Climate Regulation: Cooling for Human Comfort
- 3. Water Purification: Drinking Water Quality
- 4. Dust Control: Reduce PM₁₀ to Improve Air Quality
- 5. Aesthetics: Recreation & Economic Development

Yongding Ecosystem Services Assessment: Methods

Stakeholders

Environmental Monitoring

Yongding ES Assessment: Indicators & Metrics

Ecosystem Service	Final Services	Final Service Indicators	Methods	Ecosystem Characteristic Metrics	Methods
Water Storage	Water Volume (million m ³) = 12.1 Water Area (km ²) = 6.5	Water Loss Factor (evaporation/volume)	Variable Infiltration Capacity Model	Lake depth (m)	Variable Infiltration Capacity Model
Local Climate Regulation	Heat Index (HI) Values Sultry = 27-28 HI<27	Air Temperature (° C) Relative Humidity(%)	Hobo Data-Loggers	Evapotranspiration (mm hr ⁻¹)	Variable Infiltration Capacity Model
Water Purification	Drinking Water Quality (mg L ⁻¹) TN = 1.0; TN<1.0 TP = 0.2; TP<0.2	TN (mg L- ¹) TP (mg L ⁻¹)	Field Data	Nutrient Retention (mg L ⁻¹)	Field Data
Dust Control	PM ₁₀ (μg m ⁻³) Good Air Quality = 150; PM ₁₀ <150	PM ₁₀ (μg m ⁻³)	Government Data	Sand-flux (g cm ⁻² day ⁻¹)	Yue et al. (2006) Equations
Aesthetics	Visitor Preferences Very Beautiful Beautiful	Landscape Aesthetic Scores	Visitor Surveys	Climate Water Quality Air Quality	Visitor Surveys

Water Storage & Local Climate Regulation

Water Storage Shortfalls: (1) -6 million m³ yr⁻¹ total lake volume and (2) -1 km² yr⁻¹ surface water area

EPF suggests 1 m increase in lake depth likely to lead to 38% decrease in water loss

Final Service Indicator	Lake Depth (Standard Error)	R²	RMSE
Log Water Loss	-0.48 * (0.02)	0.97	0.08

Local Climate Regulation Shortfalls (HI>26) for June 2013: Sultry events 51-98

- New ecosystems increased local ET 0.03 mm hr⁻¹
- EPF suggests a 0.01 mm hr⁻¹ increase in ET would decrease HI by 0.02-0.07 for daytime in June 2013

Lake/Wetlands	ET (Standard Error)	R ²	RMSE
Mencheng Lake	-5.32 (0.55) *	0.87	1.14
Wetlands	-2.31 (0.52) *	0.84	1.17
Lianshi Lake	-7.07 (0.80) *	0.84	1.16
Xiaoyue Lake	-6.30 (1.97) *	0.76	1.77
Wanping Lake	-3.70 (0.57) *	0.81	1.33

Water Purification & Dust Control

Water Purification Shortfalls: Nutrient levels higher than Grade V (no permitted water uses)

- High wetland nutrient retention (61% for TN & 66% for TP)
- EPFs suggest 50% increase in wetland area (40 ha increase) to obtain required TP level, and
 75% decrease in nutrient load to obtain required TN level

Final Service Indicator	Wetland Area (Standard Error)	Nutrient Loading (Standard Error)	R ²	RMSE
Lake TN	-0.10 (0.03) *	0.41 (0.10)*	0.86	2.04
Lake TP	-0.01 (0.001) *	0.04 (0.03)	0.93	007

<u>Dust Control Shortfalls</u>: More PM₁₀ shortfalls in Post-Corridor period, thus ecosystems are likely having minimal effect on local PM₁₀ levels

No statistically significant relationship between modeled sand-flux rates and PM₁₀

Aesthetics

Aesthetics = "Very Beautiful"

Environmental Quality (Explanatory Variables)	Predicted Probabilities	
Water Quality	61%*	
Climate	51%*	
Air Quality	38%*	

Synergies & Tradeoffs

Reduce Shortfall	Management Options	Possibility	
Maintain Lakes/Wetlands (Sustain Water Supply)	1.4 m Lake Depth 54% Water Loss or Maintain Ideal Inflow Levels	Possible	
Improve Human Comfort (Reduce Heat Index)	↑ 3,300% Evapotranspiration ↑ 168 km² Water Area ↑ 1 Unit Heat Index	Unlikely	
Improve Water Quality (Increase Water Purification)		Unlikely	
Improve Water Quality (Reduce Nutrient Load)	1 14 mg/L IN 1 0a0 I		
Improve Air Quality (Dust Control)	No statistically significant relationship between sand flux and PM ₁₀	Uncertain	
Maintain Aesthetics (Environmental Quality)	"Very Healthy" Air Quality "Very Healthy" Water Quality "Cold" Climate 38%, 61% or 51% "Very Beautiful" Aesthetics	Possible (Water Quality/Climate)	

Management Recommendations

Managers found recommendations useful since assessment clarified connections: **Ecosystems-Stakeholder Needs-Multiple Objectives-Actions**

Lessons Learned

- We found progress is possible on creating ecological production functions for policy, but it requires integrative thinking
- Integrative thinking is knowledge of how to connect issues, and skills to identify strategic actions on connections

Main challenges are:

- (1) Selecting appropriate final ecosystem services
- (2) Technical expertise to perform modeling and acquire data to create EPFs for multiple services
- (3) Integrating EPFs into existing regulatory and policy contexts
- To establish the ecosystem services approach we need applied examples of EPFs to create useful performance-based information that clarifies relationships to improve management for multiple societal objectives