Ecosystems Services Approach Toward Assessing Benefits of Flood Planning

The Central Valley Flood Protection Project

December 6, 2016

Presented by: Mary Jo Kealy, CH2M

Co-Authors:

Craig Williams, California Department of Water Resources (DWR)

Brian Walker, DWR

Fatuma Yusuf, CH2M

Overview

- CVFPP context
- Basin-Wide Feasibility Studies
 - Assessment Methods
 - Recommendations

2017 ROADMAP

[TRACKING NUMBER]

CVFPP Context: A Stressed System, the Need for Action

- Central Valley people, property and assets at risk
- Current flood risk management path unsustainable
- Lack of funding for capital works and for ongoing operations and maintenance of existing infrastructure
- In 2008, the Legislature enacted the Central Valley Flood Protection Act, which authorized and required development of the Central Valley Flood Protection Plan (CVFPP) to address these issues

State of California

Central Valley Flood Protection Plan (CVFPP)

Benefitting Floodplain and Riverine Ecosystems is a CVFPP Goal

CVFPP Seeks to Provide a Range of Benefits

Flood risk management

EcosystemRestoration

Water supply and water quality

Recreation and open space

Hydropower

Navigation

Commercial fisheries

Social and regional economic effects

Basin-Wide Feasibility Studies

Ecosystem Restoration Concepts Consistent

with Flood management

 Bypass improvements

- Levee setbacks
- Transitory storage areas

Ecosystem Restoration Benefit Assessment Methods - Key influences

- Conservation Strategy
- Defines the objectives for managing the ecosystem in the public interest

- Habitat Equivalency Analysis (HEA)

 California Rapid **Assessment Method** (CRAM

- Provides the framework and guidance for quantifying gains and losses in ecosystem services
- Basis for the ecological metrics for quantifying the gains and losses in ecosystem services

Conservation Strategy Goals and Metrics

Methods - Key concepts

 Functions vary with hydrologic process: floodplain inundation

Riparian plantation

Riparian inundation

Methods - Key concepts

 Functions vary with geomorphic process: river meander

Reveted river

Meandering river

Ecosystem (Habitat) Models

- Riparian
- Marsh & other wetland
- Channel bank

Structure for all models

$$= f [Acreage \times (Process + Structure + Landscape + R)]$$

Variables

- 1. Ecosystem Process Variables
 - Floodplain inundation (Expected Annual Habitat)
 - Meander potential, presence vs. absence
 - Tidal range
- 2. Structure Variables
 - Width
 - Vegetation structure development
 - Invasive plant dominance
 - Crop type
 - Shading vegetation type
- 3. Landscape Variable buffer condition
- 4. Remainder Variable residual value

Results

Raw Acres vs. Fully Functional Acres

Net increase in Riparian Scrub/Woodland Acreage

Results

Raw Acres vs. Fully Functional Acres

 Ecological processes (inundation, meander potential) contribute to functionality Net increase in Riparian Scrub/Woodland Acreage & Function

Recommended Applications

- Assess cost/benefit of restoration
- Refine or optimize the restoration concepts
- Potential yardstick for compliance or effectiveness monitoring
- Assess the potential for a Conservation Strategy target species to use a location
- Identify target species with unmet conservation needs

7 ROADMAP

The Path Forward

- Need to change how we think about flood risk management
- 2017 Update will refine the 2012 CVFPP and provides a holistic path forward to a different approach
- 2017 Update

- The refined approach enables the State to integrate and prioritize investments in multi-benefit flood risk reduction projects
- CVFPP will take 30 years to implement at a cost of approximately \$20 Billion

References and Resources

Primary References

- Central Valley Flood System Conservation Strategy (DWR, 2015)
- Handbook for Assessing Value of State Flood Management Investments (DWR, 2014)
- California Rapid Assessment Method (California Wetland Monitoring Workgroup, 2013)

Other Resources

- Habitat Equivalency Analysis: An Overview (NOAA, 2006)
- Application of Habitat Equivalency Analysis to USACE Projects (Ray, 2009)

2017 ROADMAP

