

Why is this being done?

- Increase knowledge and awareness of ecosystems and their contribution to human wellbeing
- Promote necessity of protecting ecosystems to provide benefits for future generations
- Gain support for restoration and for future projects that will help protect the ecosystem

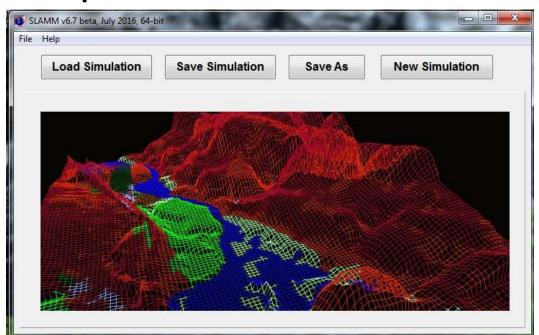
Study Outline

Identify marsh coverage
 & a series of storm scenarios

2. Identify level of protection provided by marsh

3. Determine change in damages if marsh coverage is changed by SLR

4. Determine damages avoided (\$\$) by existence of natural habitats

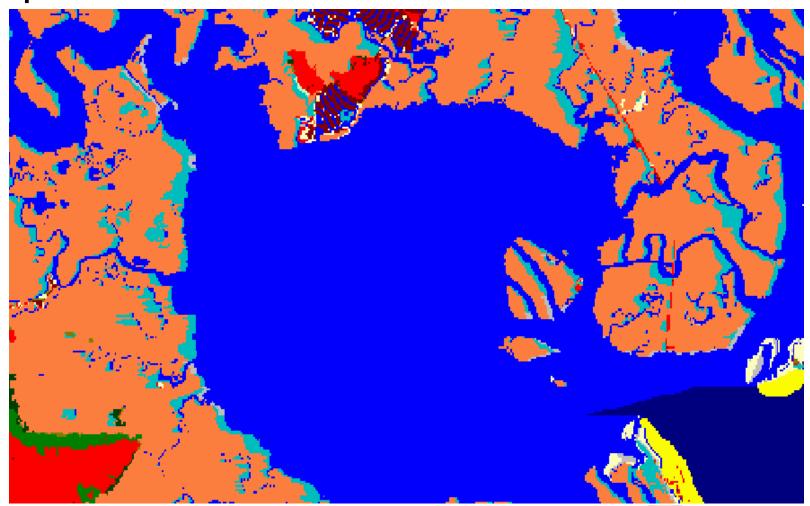


Sea Level Affecting Marsh Model

Inputs:

- National Wetlands Inventory
- Digital Elevation Model
- Slope

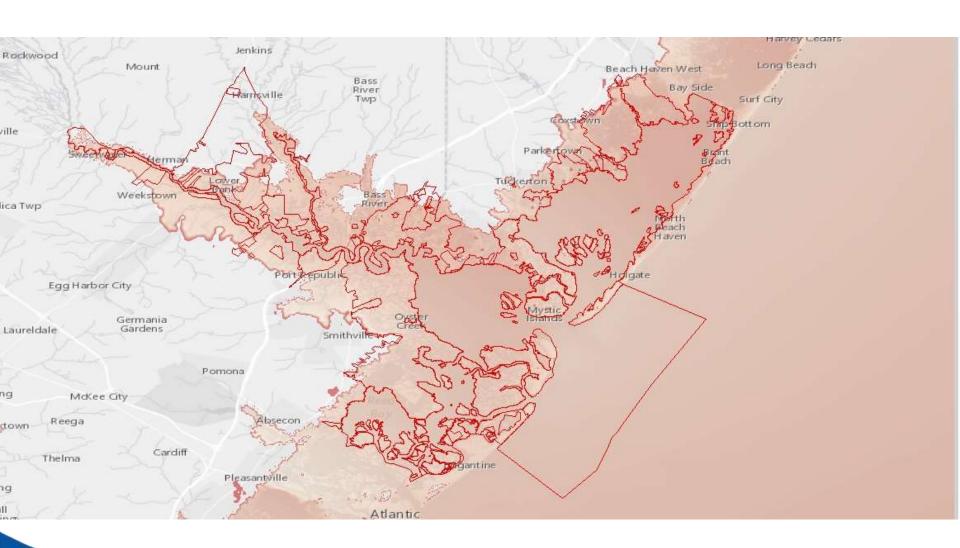
Sea Level Affecting Marsh Model


Outputs:

100000000000000000000000000000000000000	Base	ži i			2025			2050		
Coverage Class	Total Acres	% Coverage	Total Acres	% Coverage	Change from Base Acres	% Change from Base	Total Acres	% Coverage	Change from Base Acres	% Change from Base
[1] Developed Dry Land	125.08	0.77%	125.08	0.77%	0.00	0.00%	125.08	0.77%	0.00	0.00%
[2] Undeveloped Dry Land	424.87	2.62%	403.65	2.49%	-21.22	-4.99%	374.65	2.31%	-50.21	-11.829
[3] Swamp	84.44	0.52%	84.44	0.52%	-0.00	-0.00%	80.24	0.49%	-4.20	-4.989
[6] Tidal Fresh Marsh	4.17	0.03%	4.17	0.03%	0.00	0.00%	4.17	0.03%	0.00	0.00%
[7] Transitional Salt Marsh	19.39	0.12%	6.04	0.04%	-13.35	-68.86%	14.18	0.09%	-5.21	-26.899
[8] Regularly Flooded Marsh	41.50	0.26%	207.94	1.28%	166.44	401.05%	807.24	4.97%	765.74	1845.09%
[10] Estuarine Beach	104.14	0.64%	107.67	0.66%	3.53	3.39%	101.22	0.62%	-2.92	-2.80%
[11] Tidal Flat	9.78	0.06%	60.66	0.37%	50.88	520.41%	87.43	0.54%	77.65	794.169
[12] Ocean Beach	105.75	0.65%	103.18	0.64%	-2.57	-2.43%	103.74	0.64%	-2.00	-1.899
[15] Open Water	0.53	0.00%	0.53	0.00%	0.00	0.00%	0.00	0.00%	-0.53	-100.009
[16] Riverine Tidal Open Water	8668.20	53,37%	8640.70	53.20%	-27,51	-0.32%	8622.54	53.09%	-45.66	-0.53%
[19] Open Ocean	548.59	3,38%	594.15	3.66%	45.56	8.31%	635.34	3.91%	86.75	15.81%
[20] Irregularly Flooded Marsh	6074.87	37.40%	5875.24	36.18%	-199.63	-3.29%	5261.75	32,40%	-813.12	-13.389
[23] Tidal Swamp	29.68	0.18%	27.55	0.17%	-2.13	-7.19%	23.41	0.14%	-6.27	-21.129
Totals:	16241.00	100.00%	16241.00	100.00%	0.00	N/A	16241.00	100.00%	0.00	N/A

Sea Level Affecting Marsh Model

Outputs:



ADCIRC + SWAN Model

- Advanced Circulation Model (ADCIRC)
 - Outputs:
 - Water velocity
 - Water elevations
 - Water depth
- Simulating Waves Nearshore (SWAN)
 - Outputs:
 - Wave height
 - Period
 - Direction

ADCIRC + SWAN Model

Further Analyses

- Outputs from ADCIRC + SWAN
 - Parcel level data
 - Property elevated?
 - Property value
 - Tax amounts
 - ACoE Depth/Damage Functions
 - How much damage to property

Community Rating System

- The Community Rating System (CRS)
 - Three Goals:
 - Reduce flood damage to insurable property
 - Strengthen and support the insurance aspects of the NFIP
 - Encourage a comprehensive approach to floodplain management
- "Credit Points" are issued to communities that engage in these floodplain management activities

Community Rating System

CDS Class	Credit Deinte (eT)	Premium Reduction				
CRS Class	Credit Points (cT)	In SFHA	Outside SFHA			
1	4,500+	45%	10%			
2	4,000–4,499	40%	10%			
3	3,500–3,999	35%	10%			
4	3,000-3,499	30%	10%			
5	2,500-2,999	25%	10%			
6	2,000-2,499	20%	10%			
7	1,500–1,999	15%	5%			
8	1,000–1,499	10%	5%			
9	500-999	5%	5%			
10	0-499	0	0			

Open Space Preservation

- Open Space Preservation (OSP)
- The JC NERR is considered preserved open space
- Preservation of Open Space = NFIP discounts in CRSparticipating communities
 - People save money on flood insurance premiums
 - Equates to additional discretionary income to spend elsewhere in the economy
- What is the economic contribution of these savings attributed to open space preservation?

- 12 communities saved \$7.86 million in flood insurance premiums in 2013 by participating in the CRS
 - \$1.42 million of which can be attributed to open space preservation
- Using community-specific marginal propensity consume (MPC) data
 - Direct expenditures are expected to be infused into the economy due to these savings
- Total direct expenditures added to economy in 2013 was \$1,021,930

- The JC NERR is open space that provides protection to nearby and adjacent communities in the form of storm surge, flood, and wave mitigation
- Its presence helps nearby and adjacent communities qualify for flood insurance discounts through open space preservation, as defined by the CRS
- Preserving Open Space in this region (such as the JC NERR) led to \$1.42 million in flood insurance discounts in 2013
 - Which, in turn, led to \$1,021,930 in direct expenditures in 2013

Who's Involved

- Jacques Cousteau
 National Estuarine
 Research Reserve
- National Estuarine Research Reserve System
- George Mason University
- Rutgers University

