UF UNIVERSITY of FLORIDA

ABSTRACT

- Evaluating the economic values of fishery related ecosystem services would provide critical information for project evaluation and decision making.
- In this paper, we establish a linkage between fishery population and lakefront housing prices and quantify the economic value of freshwater lake fish species using hedonic property value model.
- Using Oneida lake as a case study, our empirical results suggest a statistically significant capitalization effect for an increase warmwater gamefish, the main attraction for anglers in Oneida Lake according to the New York State Angler Survey.
- A one-standard-deviation in the abundance of warmwater gamefish increases housing price by 8.8%. Our results suggest that fish abundance generate significant economic values for lakefront homeowners: the aggregated capitalized value for a one-standard-deviation increase in warmwater gamefish amounts to \$51.9 million.

CONTACT

Weizhe Weng Food and Resource Economics Department, University of Florida Email: wweng@ufl.edu Phone: 352-294-1752

INTRODUCTION

- around access to angling, boating, or visiting.
- nearly three decades (1990-2018).

Empirical Model

- lakefront price premium
- Estimating equation:

 $\log(\text{SalePrice})_{it} = \alpha + \beta_1 \text{LakeFront}_i + \beta_2 \text{LakeFront}_i \times$ FishSpecies_t + β_3 Water Quality + β_4 LakeFront_i × Water Quality_t+Controls_{it} + λ_d + λ_c + f(t) + ε_{it}

with controls for property characteristics, neighborhood demographics, spatial fixed effects at the school district and county levels, and flexible time trends.

Housing Market Capitalization of Freshwater Fisheries: Evidence from Oneida Lake, NY

Weizhe Weng¹, Xinde James Ji¹, Kevin J. Boyle², Lars G. Rudstam³, and Kelly M. Cobourn² ¹ University of Florida ² Virginia Tech ³ Cornell University

• Human societies benefit in numerous ways from ecosystem services generated by fish populations, from recreational fishery to biodiversity and ecosystem health. Evaluating the economic values of fishery related ecosystem services would provide critical information for project evaluation and decision making,

• In this paper, we propose to quantify the economic value of freshwater lake fish species using the hedonic property value method. The intuition underlying hedonic model is that property buyers would evaluate the bundle of attributes that defines the houses, including house, neighborhood, and environmental characteristics in the house search process and reveal their preferences for each attribute. Thus, property buyers' willingness to pay for environmental amenities, i.e., water quality and fish population would be captured in the housing sales prices

• Our empirical framework identifies the capitalization effect of fish populations on the change in housing price premiums between lake-front and non-lake-front houses in response to fish population changes. Changing in fish populations would bring the biggest impacts to lakefront homeowners due to their year-

• We use Oneida Lake in New York State, USA as a case study for exploring relationships between fish abundance and lakefront property values. Oneida Lake nurtures a diverse fish community and has seen a long history of recreational fishery activities. By leveraging a rich dataset of housing transactions of four counties in New York State, annual fish population observations of over 40 fish species, and spatially explicit water quality monitoring data, we are able to capture the spatial and temporal changes of fish population, water quality, and property values spanning

Figure 1: Property Sales Near Oneida Lake.

• Estimating the relationship between fish abundance and

Intuition: favorable fishing site conditions increase the premium of lakefront properties relative to other properties **Table 1 Summary Statistics of Properties**

	Lakefront Properties		Non-lakefront Properties		Difference	Sig
	Mean	SD	Mean	SD		
Real Sales Price (\$1,000) Distance to Oneida	168.476	79.232	129.581	68.453	38.895	
Lake (km)	0.045	0.029	20.863	11.692	-20.818	
No. Bedrooms	2.787	0.843	3.179	0.736	-0.392	
No. Bathrooms	1.544	0.664	1.467	0.6	0.077	
Square Footage	1593.487	650.84	1599.896	585.566	-6.409	
Lot Size (acres)	0.541	0.857	1.824	53.001	-1.283	
Property Age	46.753	31.045	51.301	36.521	-4.548	
% Senior (age>60)	0.268	0.081	0.254	0.092	0.014	
% White	0.971	0.027	0.894	0.136	0.077	
% College and Above	0.528	0.134	0.657	0.144	-0.129	
Distance to Nearest Walmart (km)	12.449	4.299	7.408	6.158	5.041	
Distance to Nearest Post Office (km)	3.904	2.418	2.268	1.579	1.636	
Ν	1447		180469			

Note: Pairwise mean difference test reported between lakefront and non-lakefront properties. ** **p<0.05, *p<0.1.

Data and Summary Statistics

Fable 2 Summary Statistics of Ecological Variables

		Mean	SD	Min	Max		
		Average Gillnet Catches					
	Walleye	19.046	6.93	5	31.8		
	Smallmouth Bass	2.73	1.032	1.133	5		
	Largemouth Bass	0.008	0.029	0	0.133		
nificance	Yellow Perch	42.41	11.784	21.067	70.733		
	White Perch	25.419	12.896	2.467	51.4		
	Channel Catfish	1.032	0.561	0.133	2.933		
	White Bass	0.31	0.368	0	1.533		
***	Northern Pike	0.017	0.034	0	0.133		
	Green Sunfish	0.018	0.089	0	0.467		
***	Brown Trout	0.011	0.025	0	0.067		
***	Rainbow Trout	0	0	0	0		
***	Atlantic Salmon	0.005	0.017	0	0.067		
		Aggregate Gillnet Catches by Species Types					
***	warmwater gamefish	21.801	7.147	7	33.8		
ate ate ate	coldwater gamefish	0.016	0.033	0	0.133		
* * *	panfish	70.484	16.813	25.867	103.867		
* * *							
***		Water Quality Indicators					
	Secchi Disk Reading (m)	3.614	0.484	2.371	4.796		
***	Avg Temp (degree C)	19.777	0.715	17.73	21.41		
	pH	8.231	0.171	7.913	8.592		
***	Bottom DO (mg/L)	6.422	0.67	5.024	8.286		
	Chlorophyll a	4.768	1.452	2.185	11.762		
*p<0.01,	Total Phosphorus	21.922	4.822	13.475	35.748		
	NOx	172.054	61.809	67.548	333.841		

on Lakefront Premium. Panel A (left) estimates equation (1) and plots the point estimates of individual species abundance (standardized into z-scores) interacted with the lakefront dummy variable. Panel B (right) estimates equation (1) and plots the point estimates of species categories (standardized into z-scores) interacted with the lakefront dummy variable. Red dotted line displays zero, and error bars show 95% confidence intervals.

error bars show 95% confidence intervals.

- Fishery abundance significantly capitalizes into lakefront housing prices
- Back-of-envelope analysis suggests that: ~3300 total lakefront houses around Oneida Lake
- \$168k average housing price
- That leads to:
- \$48.8 million increment in property valuation
- $\circ \sim$ 1 million increment in annual property tax revenue

Results

Figure 2: Parameter Estimates of the Impact of Species Abundance

Figure 3: The impact of fish abundance on water quality valuation

Figure 4: Spatial Spillover of the Impact of Species Abundance on Lakefront Premium. Panel A (left) estimates equation (2) and plots the point estimates of individual species abundance (standardized into z-scores) interacted with proximity dummy variables. Panel B (right) estimates equation (2) and plots the point estimates of species categories (standardized into z-scores) interacted with proximity dummy variables`. Red dotted line displays zero, and

CONCLUSIONS

• 8.8% increase in lakefront premium for every 1sd increase in walleye abundance