Production of high quality citrus pectin peel

Susanne Oxenbøll Sørensen, CP Kelco ICBC, September 17th 2015
In case you are already fantasizing about drinks in the bar….

• High quality citrus pectin peel
 – Efficient washing and drying process
 • Peel particle size
 – Control of enzymatic activity
• Time
• pH
 – Don’t burn the pectin peel!!!
• CP Kelco
• Pectin
• Citrus pectin peel
• Parameters affecting peel quality
• Summary
• CP Kelco
• Pectin
• Citrus pectin peel
• Parameters affecting peel quality
• Summary
• CP Kelco is a hydrocolloids producer 100% owned by the JM Huber Corporation

• JM Huber is a 120 year old family owned corporation comprising CP Kelco, Huber Engineered Woods and Huber Engineered Materials

• CP Kelco’s Hydrocolloid portfolio
 – Pectin
 • Extracted from citrus peel (DEN, GER, BRA)
 – Carrageenan
 • Extracted from seaweed (DEN, PHI)
 – Carboxymethyl Cellulose (CMC)
 • Manufactured from wood pulp or cotton linters (FIN, CHN)
 – Biogums (Gellan, Xanthan and Diutan)
 • Produced by fermentation (USA, CHN)
• **Pectin extraction process**

![Diagram of Pectin Extraction Process]

- **Raw material arriving**
- **Shipping of Pectin**
- **Finished Product**
- **Blending and standardization**
- **Ready for characterization!**
- **Powdered semi-finished product**
- **Milling**
- **Drying**
- **Filtration**
- **Ion-Exchange**
- **Precipitation**
- **Washing**
- **H₂O**
- **Acid**
- **Insoluble Material**
- **IPA 80%**
- **IPA 60%**
Applications – Food & Beverage
- Bakery
- Beverage systems
- Confectionery
- Dairy (cheeses, ice cream, yogurts and desserts)
- Fruit based products including jams/jellies
- Meat, poultry, analogue and fish processing
- Salad dressings, marinades & sauces
- Water dessert gel

Applications – Consumer & Industrial
- Agrochemicals & Animal Feed
- Ceramics
- Construction (viscosity modifying agent) & Paints
- Household Products (paper towels, surface & toilet cleaners, detergents)
- Oral Care
- Personal Care (creams, gels, shampoo)
- Pharmaceuticals
- Textile Printing
• CP Kelco
• Pectin
• Citrus pectin peel
• Parameters affecting peel quality
• Summary
Schematic pectin structure

Rhamnogalacturonan I Xylogalacturonan Homogalacturonan Rhamnogalacturonan II

- = D-Galacturonic acid
- = L-Rhamnose
- = D-Galactose
- = D-Glucuronic acid
- = L-Arabinose
- = L-Galacturonic acid
- = L-Galactose
- = Kdo
- = L-Fucose
- = D-Apiose
- = D-Xylose
- = D-Dha
- = O-Acetyl
- = O-Methyl
- = Borate
• Model of plant cell wall structure - pectin is the glue
• Pectin quality parameters
 – Degree of esterification (DE)
 – Molecular size (Intrinsic viscosity – IV)
 – Galacturonic acid content (GA)
• Degree of methyl esterification
 – DE > 50% (HM)
 – DE < 50% (LM)

Methyl esterification of acid groups affects calcium reactivity

PLANT PHYSIOLOGY, Third Edition, Figure 15.13 (Part 2) © 2002 Sinauer Associates, Inc.
• Molecular size (Intrinsic viscosity)
 – Average molecular size
 – Typical unit is dl/g
 – Correlates to grading strength of many applications
 – HPSEC
 • Viscotek
• Galacturonic acid content
 – The amount of GA residues relative to the total amount of pectin
 – Homogalacturonan
 – Considered the “active” part of pectin
• The best preserved pectin precursor is always the preferred choice
• Citrus peel is by nature an excellent precursor
 – High yield and quality
 – Available in sufficient amount
 – Stable and consistent supply...

However...
attention/effort is required to ensure high peel quality
• CP Kelco
• Pectin structure and localization
• Pectin quality
• Citrus pectin peel
• Parameters affecting peel quality
• Summary
Total citrus harvest (2014/15)
Source: USDA /FAS
Total crop 88,473 kMT

74% Fresh fruit
26% processed

What happens to the processed peel?
90% Cattle feed + other
10% Dry peel

Estimated annual dry peel production 115,000 MT
56% Lemon
30% Lime
13% Orange
1% Other

>80% of Lemon/Lime wet peel dry pectin peel
1-2% of Orange wet peel dry pectin peel
Parameters affecting peel quality

• CP Kelco
• Pectin
• Citrus pectin peel
• Parameters affecting peel quality
• Summary
Parameters affecting peel quality

Dry pectin peel process

Fruit

Juice/oil extraction

Milling

Wet peel

Dry peel

Compactor

Cooling

Dry peel with 10% moisture in 50 kg bales

Three pass dryer

Pre-dryer single pass

Dry peel with 10% moisture in 50 kg bales

Pre-Screw press

Final Screw press

Pre-Pressing

2 step drying

Tank 3

Tank 2

Tank 1

3-step counter current washing

The What if...You CAN!™ Company

20
• Why is washing and drying required?
 – Increase net pectin content = pectin extraction yield
 – Prevent further degradation = stabilize pectin
 • Long distance transport of peel (South America – Europe)
Dry pectin peel process

Parameters affecting peel quality

Important
- Fruit ripeness
- Fruit quality
- Residence time of fruit and peel
- De-oiling
- Size distribution after milling

Important
- pH
- Brix
- Temperature
- Residence time of wet peel

Important
- Drying temperatures
- Cooling of peel to ambient temperature

- Juice/Oil extraction
- Milling of peel
- Counter current washing with water
- Screw press
- Rotary dryer to reach 10% moisture
- Compacting into 50 kg bales
Parameters affecting peel quality

Fruit ripeness/quality and residence time

Fruit
- Juice/Oil extraction
- Milling of peel

Wet peel
- Counter current washing with water
- Screw press

Dry peel
- Rotary dryer to reach 10% moisture
- Compacting into 50 kg bales

Important
- Fruit ripeness
- Fruit quality
- Residence time of fruit and peel
- De-oiling
- Size distribution after milling
Parameters affecting peel quality

Best quality at time of juicing... ... starts immediately

Enzymes
Endogenous (in the peel) or exogenous (microbial or "process aid")

Enzymatic activity depends on temperature and pH
Impact of fruit ripeness and wet peel residence time on peel quality

<table>
<thead>
<tr>
<th>Quality</th>
<th>Hours’ residence time from juice extraction to washing/drying</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0h</td>
</tr>
<tr>
<td>Production month</td>
<td></td>
</tr>
<tr>
<td>Season start</td>
<td>100%</td>
</tr>
<tr>
<td>1 Month</td>
<td>99%</td>
</tr>
<tr>
<td>2 Month</td>
<td>98%</td>
</tr>
<tr>
<td>3 Month</td>
<td>96%</td>
</tr>
<tr>
<td>4 Month</td>
<td>95%</td>
</tr>
<tr>
<td>5 Month</td>
<td>94%</td>
</tr>
<tr>
<td>6 Month</td>
<td>93%</td>
</tr>
<tr>
<td>7 Month</td>
<td>92%</td>
</tr>
</tbody>
</table>

1.2% loss of functionality per month and 3% per hour
Parameters affecting peel quality

De-oiling

Fruit
- Juice/Oil extraction
- Milling of peel

Wet peel
- Counter current washing with water
- Screw press

Dry peel
- Rotary dryer to reach 10% moisture
- Compacting into 50 kg bales

Important
- Fruit ripeness
- Fruit quality
- Residence time of fruit and peel
- De-oiling
- Size distribution after milling
• De-oiling prior to juicing
 – De-oiling by gently puncturing oil cells (Flavedo layer) is an advantage versus rasping technology
 • The hard and water repellant peel surface is opened and permeable to water both during peel washing and during pectin extraction process

Parameters affecting peel quality
Parameters affecting peel quality

Peel particle size

Fruit
- Juice/Oil extraction
- Milling of peel

Wet peel
- Counter current washing with water
- Screw press

Dry peel
- Rotary dryer to reach 10% moisture
- Compacting into 50 kg bales

Important
- Fruit ripeness
- Fruit quality
- Residence time of fruit and peel
- De-oiling
- Size distribution after milling
Parameters affecting peel quality

• Peel Particle size
 – Uniform particle size is recommended
 • Preferably ~5mm
 • Important to adjust mill according to peel hardness and keep knives sharp
 – Uniform particle size distribution means
 • Easier removal of soluble solids during washing (increasing pectin yield)
 • Gentle but effective drying without burning small particles
 – Larger particles contain more moisture – more difficult to dry
Parameters affecting peel quality

Washing conditions

Fruit
- Juice/Oil extraction
- Milling of peel

Wet peel
- Counter current washing with water
- Screw press

Dry peel
- Rotary dryer to reach 10% moisture
- Compacting into 50 kg bales

Important
- pH
- Brix
- Temperature
- Residence time of wet peel
• Washing conditions
 – pH - the "regulator" of enzymes
 • General conditions – we recommend pH 4 (last wash/final press)
 – At pH >4 DE reducing enzymes are active 😞
 – At pH <4 IV reducing enzymes are active 😞
 – Brix – indicator of washing efficiency (removed soluble solids)
 • As low as possible is preferred
 • Depend on local conditions
 – Temperature – ambient is preferred
 • Increased solubility and thus higher washing efficiency at higher temp.
 • But enzymatic activity is then also increased
 – Time – no residence time of washed peel
 • Increased risk of enzymatic degradation
Parameters affecting peel quality

Drying temperatures

Fruit
- Juice/Oil extraction
- Milling of peel

Wet peel
- Counter current washing with water
- Screw press

Dry peel
- Rotary dryer to reach 10% moisture
- Compacting into 50 kg bales

Important
- Drying temperatures
- Cooling of peel to ambient temperature
Parameters affecting peel quality

- **Drying temperature**
 - Pectin chain (IV) degradation accelerates when peel temperature exceeds 90 °C

- **Recommended drying conditions**
 - Air inlet of dryer <500 °C and outlet 110-120 °C
 - Peel outlet of dryer 70-80 °C
• CP Kelco
• Pectin
• Citrus pectin peel
• Parameters affecting peel quality
• Summary
• High quality citrus pectin peel
 – Efficient washing and drying process
 • Peel particle size
 – Control of enzymatic activity
 • Time
 • pH
 – Don’t ”burn” the pectin peel!!!
Acknowledgements

Thanks to my colleagues :

Thomas Alsted
Olney Greilberger
Paul van Wagenen