The 12th International Symposium on Biogeochemistry of Wetlands in Coral Springs, Florida, USA, April 23-26, 2018

Methane Emissions from the Stems of Living Trees in Upland Forests

Zhi-Ping Wang

Institute of Botany, Chinese Academy of Sciences, Beijing

cknowledgements

FBOILS

Ministry of Science and Technology

Outline

- 1. Do plant-based CH₄ emissions constitute a distinct source?
- 2. CH₄ production / emissions in / from the heartwood / stems of living trees
- 3. Factors controlling CH₄ production in heartwood
- 4. Perspective: Novel and large source?

Are plant-based CH₄ emissions a distinct source?

Forest Wetlands versus Upland Forests

Outline

2. CH₄ production / emissions in / from the heartwood / stems

of living trees

Methane emissions from the trunks of living trees on upland soils

Zhi-Ping Wang^{1,2}, Qian Gu¹, Feng-Dan Deng^{1,3}, Jian-Hui Huang¹, J. Patrick Megonigal⁴, Qiang Yu², Xiao-Tao Lü², Ling-Hao Li¹, Scott Chang⁵, Yun-Hai Zhang¹, Jin-Chao Feng⁶ and Xing-Guo Han^{1,2}

¹State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; ²State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China; ³University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China; ⁴Smithsonian Environmental Research Center, PO Box 28, Edgewater, MD 21037-0028, USA; ⁵Department of Renewable Resources, University of Alberta, Edmonton, T6G 2E3 Alberta, Canada; ⁶Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China

The experimental layout in the Beijing Forest Ecosystem Station (a), the upper plot (b), the lower plot (c), and chambers (d).

CH₄ production in the heartwoods of living *P. davidiana* in a small terrace

in the Xiaolongmen Forest Farm.

Position	Average	Trunk diameter	Heartwood					
	age (y)	(cm)	Water content	CH₄ concentration	CH₄ production			
			(%)	$(\mu L L^{-1})$	(ng gdw ⁻¹ h ⁻¹)			
118°44'6.8"E, 31°57'3.5"N	20	47.3 (5.7)	68.5 (3.0)	23.6 (20.0) × 10 ⁴	81.64 (63.09)			
1150 m above sea level								
Value is Mean (SD), $n = 5$ for	trunks.							
Wood materials were sampled	in August 9	9, 2015.						

Previous studies

CH₄ flux calculations and CH₄ budget estimates

Componer	nt	Jul 2014	Aug	Sep	Oct	Nov	Dec	Jan 2015	Feb	Mar	Apr	May	Jun	Jul	Annual
		CH_4 flux (µg trunk ⁻¹ h ⁻¹ for tree or µg m ⁻² h ⁻¹ for soil)													
Tree	Populus davidiana	Э													
	Trunk I	1345.3	1318.1	517.9	530.8	309.9	n.a.			312.3	606.2	922.4	1240.1	1083.4	
	Trunk II	1125.0	1118.8	342.2	398.9	215.6				309.7	502.4	819.8	1137.4	841.4	
	Trunk III	1185.7	1170.7	411.1	437.7	276.2				310.2	525.9	837.4	1160.6	936.0	
	Twig and leaf		n.a.	n.a.											
	Carya cathayensi	s								n.a.	n.a.	n.a.	n.a.		
	Larix gmelinii									n.a.	n.a.	n.a.	n.a.		
Soil		-74.5	-73.2	-60.3	-50.6	-47.0	-12.1			-19.3	-39.2	-58.2	-79.5	-57.2	
								Plot-wic	le CH ₄ (g plot ⁻¹)					
Tree	Mean	76.2	75.2	25.6	28.5	16.2				19.4	33.0	53.7	71.3	59.6	390.7
	Range 70.3~84.169.9~82.420.7~31.324.9~33.213.0~18.7 19.4~19.5 30.4~36.7 51.2~57.6 68.8~75.0 52.6~6										52.6~67.	359.8~430.3			
Soil		-88.7	-87.2	-69.5	-60.2	-54.1	-14.4	-14.4	-13.9	-23.0	-45.1	-69.3	-91.6	-68.1	-621.1

Table 1 Annual budget of CH4 in the forest ecosystem

Plot-wide CH₄ were estimated using the parameters of living tree species, such as the 84 trunks of living *P. davidiana* in the lower plot of 1600 m² (Tree bases were assumed as zero and not excluded in plot area) and the mean 15.3 m trunk height of *P. davidiana* (see Table S1).

Trunk I, II, and III indicate trunk CH₄ emissions calculated by arithmetic average, logarithm function, and power function, respectively.

Annual CH₄ is the sum of those in months; CH₄ in July is an average of two values in July 2014 and July 2015.

The CH₄ fluxes measured were undetectable and defined as n.a. for not applicable (no data available).

Traditional hypothesis 100% 100%

Outline

3. Factors controlling CH₄ production in heartwood

Tree species with capacity of substantial CH₄ production in heartwood

Temperature Water content (Wang et al., 2017, Journal of Geophysical Research: Biogeosciences) Most of tree species with no capacity of substantial CH₄ production in heartwood (*Wang et al., 2017*)

Even if high water content, no CH₄ production!

Why?

Secondary metabolites, e.g. carbohydrates , phenolic compounds? (Unpublished)

Field investigation

Ν

Â

Heartwood water content (w/w, %)

Extractive solution of heartwood of a tree species that has no capacity of substantial CH₄ production in heartwood

Adding

Answering why no capacity of substantial CH₄ production

Fresh heartwood of another tree species that has the capacity of substantial CH_4 production in heartwood

Water-soluble extractives enhanced microbial CH₄ production.

(a) Treatments are the 1 g heartwood of *Ulmus davidiana* + 1 mL Deionized Water, + Extractive (1 mL heartwood extractive solution of *Salix matsudana* (no CH_4 production)) and + autoclaved Extractive. (b) Treatments are the 1 g heartwood of *U. davidiana* or *P. canadensis* + 1 mL DW and + 1 mL heartwood extractive solution of *P. tabuliformis* (no CH_4 production).

Treatment

Ethanol-soluble extractives enhanced microbial CH₄ production, when ethanol's effect was removed.

Treatments are the 0.8 g fresh heartwood of *Populus davidiana* + 1 mL DW and + 1 mL 100% E extractive solution of *Pinus tabuliformis* (no CH_4 production) evaporated and then 1 mL DW added.

Acetone-soluble extractives inhibited microbial CH₄ production, when acetone's effect was removed.

Treatments were the 1 g fresh heartwood of *P. canadensis* or *U. davidiana* + 1 mL DW or 1 mL heartwood extractive solution of *P. tabuliformis* (no CH_4 production), the 1 g fresh heartwood of *P. davidiana* + 1 mL DW or + 1 mL heartwood extractive solution of *S. matsudana* (no CH_4 production).

No substantial CH₄ in the heartwood of most tree species in upland forests, when other variables are appropriate

Net effect of secondary metabolites on microbial CH₄ production in heartwood? Inhibition!

Summary

> For tree species with capacity of substantial CH_4 production, when temperature was not a limiting factor for CH_4 production in summer and autumn, and thus, most of the CH_4 production may be explained by water content in the heartwood of living trees.

> For tree species with no capacity of substantial CH_4 production, net effect of secondary metabolites may inhibit microbial CH_4 production in the heartwood.

Perspective: Novel and large source?

- 1, Ecogeography: temporal and spatial distribution, the magnitude of CH_4 emission?
- 2, CH₄ production mechanism and dynamics?
- *3, More relationships between* CH₄ *production/emission and factors?*

Thank you for attention

