The Southwest Florida Feasibility Study and Climate Change

Lisa B. Beever, Charlotte Harbor National Estuary Program
Dan Trescott, Southwest Florida Regional Planning Council
James W. Beever III, SW Florida Regional Planning Council
Tim Walker, Southwest Florida Regional Planning Council
Tim Liebermann, South Florida Water Management District

July 30, 2008
Gulf of Mexico

Lake Okeechobee
- Land Use Decisions
- Infrastructure Investments
- Conservation Planning

Legend

Storm Surge
- Tropical Storm
- Category 1
- Category 2
- Category 3
- Category 4/5

- SWFFS Boundary
- County Boundaries
- Roads
Anticipated SWF Climate Changes

- Sea Level Rise
- Increased Severe Storms
- Increased Rainfall and Average Temperature
- Water Chemistry Changes (pH, DO, etc.)
- Landforms migration to maintain relative position within the coastal energy gradient (Pethick 2001)
- Migration of Barrier Islands if not hardened
- Mangrove ability to accrete sediment (Singh 2003)
- Habitat migration with landform changes
- Expansion of invasive species ranges
- Water Table Changes
Habitat Structure-2000
Southwest Florida

Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/), University of Maryland Center for Environmental Science.
Principals from Capitol Hill Oceans Week
(National Marine Sanctuary Foundation, June 3-5, 2008)

- Maintain heterogeneous geophysical processes and gradients
- Maximize connectivity among these (Braun TNC)
- Enable natural world to change (Shumway TNC)
- Hydrologic restoration, migratory corridors, oyster reefs
- Protect refugia, gradients (latitudinal/elevational), heterogeneity, gene flow/connectivity (Larsen Ecoadapt)
- Reduce non-climate stresses (invasive species, pollution, etc)
- Protect freshwater sources

http://nmsfocean.org/chow2008/
Protect:

- Latitudinal and Elevational Gradients
- Heterogeneity and Refugia
- Gene Flow / Connectivity
Hydrologic Restoration
Protect Freshwater Sources
Estero Bay STELLA Runs

Green: Natural System Model Flows

Blue: Resulting Flows

All Tier 1&2 Projects

No Projects

By Richard Punnett
Reduce Non-Climate Stresses

- Protective Water Quality Targets
 - Estero Bay TN of 0.5 mg/l greater than TMDL
 - Caloosahatchee load reduction of 1.2 m lb/yr
- Invasive Species Removal
 - Reduce Exotic Species Cover
 - Remove spoil and fill ditches
- Restored freshwater flow regimes
Protect Restoration Investments in the Context of Sea Level Rise
Most investment above sea level rise predictions

<table>
<thead>
<tr>
<th>Area</th>
<th>Tier 1</th>
<th>Tier 2</th>
<th>Tier 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 10'</td>
<td>85%</td>
<td>90%</td>
<td>91%</td>
</tr>
<tr>
<td>Lands in Conservation</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Wetlands</td>
<td>5%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Water</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Shore Protection Almost Certain</td>
<td>7%</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Project Description</td>
<td>Acres</td>
<td>Tier</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Belle Meade Stormwater Master Plan/Central Flow-way Restoration</td>
<td>5,031</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Belle Meade Flow-way south of Tamiami Trail</td>
<td>967</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>South Belle Meade Flow-way</td>
<td>349</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hancock Creek Riverine Corridor</td>
<td>179</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hickey Creek Swamp</td>
<td>158</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>41 Culvert Emplacement west of Tamiami Trail Culverts Project</td>
<td>131</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Spring Creek Flow-way</td>
<td>99</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Yucca Pen Mines</td>
<td>95</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Southwest Unacquired Yucca Pens</td>
<td>91</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bluejack Oak Parcel</td>
<td>76</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Yucca Pen Creek West</td>
<td>67</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Estero River North</td>
<td>63</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mouth of Orange River</td>
<td>40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bone Fish Springs Acquisition</td>
<td>39</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lakes Park/Hendry Creek Connector</td>
<td>29</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Flow-way north of Alico Road (Alico Mine Flow-way) (Tam-Alico)</td>
<td>25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Halfway Creek Flow-ways</td>
<td>24</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Alico Flow-ways West</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Relevant Findings

• Consideration of predicted sea level rise can be used to reduce risk and assess benefits of restoration investments.
• The SWFFS includes alternatives which are predominately above long-term (200 year) sea level rise predictions.
• Issues of climate change mitigation and adaptation are best addressed thru interagency partnerships that CERP, CHNEP, and SWFRPC promote.
 • SWFFS implementation protects latitudinal and elevational gradients, heterogeneity, connectivity, refugia.
 • SWFFS implementation protects freshwater resources for ecosystem health and human use.
 • SWFFS implementation reduces non-climate stresses.
Presenter Contact: Lisa B. Beever, PhD, AICP

1926 Victoria Ave, Fort Myers FL 33901-3414

239/338-2556, Toll free 866/835-5785
Fax 239/338-2560,

lbeever@swfrpc.org www.CHNEP.org