Patterns of peat elevation in the ridge-slough mosaic

Danielle L Watts, Matt Cohen, Jim Heffernan, Todd Osborne, Mark Clark

GEER 2008
Alternative States

Ridge
Higher Peat Elevation
Higher Productivity
Decreased Periphyton

Slough
Lower Peat Elevation
Lower Productivity
Increased Periphyton

Increased hydroperiod
Increased water depth

Decreased hydroperiod
Decreased water depth
Question 1

Does the ridge-slough mosaic express alternative stable states?
Predictions

- \(P_{1-1}\): There is a bimodal distribution of water depths.

- \(P_{1-2}\): Veg communities show fidelity to discrete water depth distributions.

- \(P_{1-3}\): Spatial autocorrelation is high at near-point neighbors, decreases with increasing distances.
Question 2

- How do the underlying characteristics of ridge-slough change with hydrologic modification?
Predictions

• P_{2-1}: Bimodality is lost with increasing hydrologic impairment.

• P_{2-2}: Occurrences of communities alters with hydrologic modification.

• P_{2-3}: Water depth variance increases with hydrologic impairment within communities.

• $P_{2-4\&5}$: Anisotropy and spatial structure decline with hydrologic impairment.
Sampling
Analyses - Vegetation

Ridge: C. jamaicense

Wet Prairie: Various graminoids, rushes, sedges

Slough: N. odorata, Utricularia spp
Anisotropy

- Property of being directionally dependent
- Difference in a variable when measured along different axes.
Spatial Structure

- Principle of organization

- Amount of spatial variability not explained by human or natural error

Autocorrelation

• Tool for finding repeating patterns

• Correlations between points over distances

• (-1,1) indicate perfect negative correlation and positive correlation
Results
Bimodality
Vegetation and water depth

<table>
<thead>
<tr>
<th>Site designation</th>
<th>Community</th>
<th>t-value</th>
<th>p-value</th>
<th>mean (cm)</th>
<th>var (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drained/Low Flow</td>
<td>Ridge</td>
<td>-3.98</td>
<td>0.004</td>
<td>32.73</td>
<td>21.20</td>
</tr>
<tr>
<td></td>
<td>Slough/Wet Prairie</td>
<td></td>
<td></td>
<td>39.38</td>
<td>20.98</td>
</tr>
<tr>
<td>Drained</td>
<td>Ridge</td>
<td>-4.92</td>
<td>3.03E-06</td>
<td>20.88</td>
<td>28.02</td>
</tr>
<tr>
<td></td>
<td>Wet Prairie</td>
<td></td>
<td></td>
<td>25.32</td>
<td>21.34</td>
</tr>
<tr>
<td>Conserved 1</td>
<td>Ridge</td>
<td>-17.33</td>
<td>< 2.2E-16</td>
<td>20.94</td>
<td>41.62</td>
</tr>
<tr>
<td></td>
<td>Slough</td>
<td></td>
<td></td>
<td>37.09</td>
<td>14.71</td>
</tr>
<tr>
<td>Conserved 2</td>
<td>Ridge</td>
<td>-14.21</td>
<td>< 2.2E-16</td>
<td>28.73</td>
<td>46.51</td>
</tr>
<tr>
<td></td>
<td>Slough</td>
<td></td>
<td></td>
<td>48.43</td>
<td>41.00</td>
</tr>
<tr>
<td>Transition 1</td>
<td>Ridge</td>
<td>-17.52</td>
<td>< 2.2E-16</td>
<td>35.47</td>
<td>60.55</td>
</tr>
<tr>
<td></td>
<td>Slough</td>
<td></td>
<td></td>
<td>61.03</td>
<td>54.89</td>
</tr>
<tr>
<td>Transition 2</td>
<td>Ridge</td>
<td>-6.82</td>
<td>1.41E-09</td>
<td>40.65</td>
<td>153.13</td>
</tr>
<tr>
<td></td>
<td>Slough</td>
<td></td>
<td></td>
<td>57.88</td>
<td>143.25</td>
</tr>
<tr>
<td>Impounded</td>
<td>Ridge</td>
<td>-7.01</td>
<td>1.26E-08</td>
<td>21.07</td>
<td>118.51</td>
</tr>
<tr>
<td></td>
<td>Slough</td>
<td></td>
<td></td>
<td>36.94</td>
<td>72.43</td>
</tr>
</tbody>
</table>
Spatial Analyses

![Graph showing Q vs. Anisotropy Factor for different land use types: Drained/Low Flow, Drained, Conserved 1, Conserved 2, Transition 1, Transition 2, Impounded. The graph compares Q and Anisotropy Factor across various categories.]
Autocorrelation
Conclusions

1. The ridge-slough mosaic exhibits bimodal patterns.

2. Hydrologic modification is associated with a convergence of ridge-sloughs, increases in variance.

3. Drained areas lose spatial structure; impounded areas lose directional anisotropy.

4. Community abundance shifts with altered hydrology, as does the type of slough vegetation.
Further...

- Evidence highly suggestive of alt. stable states
- Hydrologic modification alters:
 - State stability
 - Pattern dynamics
- Discrete set of hydrologic conditions for R-S patterning
- Multi-level responses for patterning
So….

- Soil elevation key indicator of ridge-slough stability and loss.
Potential Mechanisms

1. Nutrient subsidy
2. Floc/sediment transport
 (Larsen et al 2007)
3. Locally positive feedbacks (productivity and respiration) and landscape negative feedbacks (hydrology)
 (Scheffer et al 2008)
Multiple Equilibria
Next Steps

• Test predictions regarding potential mechanisms for patterning.

• Quantify carbon budget for ridge and sloughs along hydrologic gradients.

• Partition carbon budget (respiration, production, photolysis) to understand peat accretion drivers.
Acknowledgements/Contributors

Funding provided by:
MAP-RECOVER/
US Army Corps of Engineers
School of Natural Resources and Environment

Special Thanks to:
• Lizzy Diemeke
• Jason Evans
• Jim Heffernan
• Jeffre Hull
• Tim Kayes
• Sanjay Lamsal
• Dina Leibowitz
• Lauren Long
• Tae-goo Oh
• Laura Schreeg
• Justin Vogel
• Adam Watts
Thank-you.

Photo credit: Tyler Jones