Adaptive management in a learning environment

A case study of hydrology & water quality in the A.R.M. Loxahatchee National Wildlife Refuge

Matthew C. Harwell, FWS
Nicholas G. Aumen, NPS
Laura A. Brandt, FWS
Donatto D. Surratt, NPS
Michael G. Waldon, FWS
Some Tenets of Adaptive Management

• Learning happens

• Learning incorporated into decision processes

• Learning can increase management flexibility

• Directed knowledge can be used for assessing potential consequences & risks of decisions

• Combination of focused monitoring, modeling & experimentation leads to successful AM
Refuge Background

- Established in 1951
- 144,000 acres

Purposes:
- Conservation
- Water Supply
- Flood Protection
- Soft-water system
- Historically rainfall-dominant
- Formerly sheet-flow
- Water Regulation Schedule
- Consent Decree for WQ
Current Refuge Inflows and Outflows

Current Inflow

Current Outflow
Managing Refuge Resources Involves:

- Maintaining **water quantity** & **water quality**
- Identifying water management strategies to maximize ability to achieve desired conditions
How Does Water Management Influence the Refuge Marsh?

- Water Management Operations
- Canal Flow and Stage
- Water Intrusion
 Canal \leftrightarrow Marsh
- Water Quality and Hydrology in Marsh
- Marsh Ecology
Refuge’s Enhanced Water Quality Monitoring & Modeling Program

• Field activities:
 – Marsh WQ characterization
 – Canal water intrusion
 – Ecological effects

• Modeling exercises:
 – Water budget
 – Hydrodynamic
 – Water quality
Water Quality Gradients in the Refuge

Conductivity

Conductivity (µS cm⁻¹) vs. Distance into marsh (km)
Canal Water Intrusion

- Conductivity transects used to track canal water penetration into the marsh

- Conductivity sondes recording hourly along gradient transects throughout the marsh
Learning & Resource Management

- Pumped inflow should be of short duration when canal and marsh stages are similar.
- Inflow can be higher when marsh stages are greater than 0.5 ft higher than canal stages.
- Inflow should cease (or have comparable or greater outflows) when canal stages are greater than 0.25 ft higher than marsh stages.
- If greater volume or duration of inflows are needed, maintain high outflows.

★ Adaptive Management ★

in a Learning Environment
Utilizing Knowledge for Management Decision Within an AM Framework

Case Study Scenario: (February, 2008)

• STA-1E discharges usually limited to < 550 cfs

• Rapid increase in water entering STA-1E (rain, inflows)

• Possible resource management questions:
 – What are options for minimizing impacts?
 – What is likely outcome based on learned knowledge?
 – What can be done to learn from the event?
 – Is risk acceptable enough to receive additional discharges from STA-1E?
Proposed Increased Inflows

Previous Conclusion:
“If greater volume or duration of inflows are needed, maintain high outflows.”

Timing/Extent Outflows

Conclusion: “If greater volume or duration of inflows are needed, maintain high outflows.”
Learning from AM experiment

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Inflows</td>
<td>Low</td>
<td>Inflows</td>
</tr>
<tr>
<td>Outflows</td>
<td>High</td>
<td>Outflows</td>
</tr>
</tbody>
</table>

Feb. 2008: High Inflows, High Outflows
Mar. 2005: Low Inflows, High Outflows

Inflow (red) and Outflow (black) for Jan-05, Mar-05, May-05, 31-Jan-08, 10-Feb-08, 20-Feb-08, 01-Mar-08, 11-Mar-08.
Learning from AM experiment

<table>
<thead>
<tr>
<th>Distance from canal (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

Intrusion by STA-1E

- 500 µS/cm
- 350 µS/cm

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High Intrusion</td>
<td>Moderate Intrusion</td>
</tr>
<tr>
<td>0.5 – 1.25 km</td>
<td>0.25 – 0.6 km</td>
</tr>
</tbody>
</table>

Distance from canal (km)

- 31-Jan-08
- 10-Feb-08
- 20-Feb-08
- 1-Mar-08
- 11-Mar-08
Science for Resource Management

<table>
<thead>
<tr>
<th>Information</th>
<th>Then</th>
<th>Now</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Structure Operations</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>• Canal & Marsh Stage</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>• Tracking Canal Water Movement</td>
<td></td>
<td>Transects at inflows</td>
</tr>
<tr>
<td>• Water Quality in Marsh</td>
<td>14 stations</td>
<td>> 52 stations</td>
</tr>
<tr>
<td>• Modeling</td>
<td>Limited</td>
<td>More extensive</td>
</tr>
<tr>
<td>• Ecological Effects</td>
<td>Limited</td>
<td>More extensive</td>
</tr>
<tr>
<td>• Management Recommendations</td>
<td>Present</td>
<td>Continued to be refined</td>
</tr>
</tbody>
</table>
Key Messages

- Science-based approach fosters expert knowledge
- Directed knowledge plays integral role in better assessing consequences & risks
- Resource management flexibility can be increased
- Increased flexibility provides additional opportunities for learning
Thank You & Questions

Snail kite chicks – July, 2008

Photo: Ed Bullington

Oliver Ray Baranski – July, 2008