Regional and Local Carbon Flux Information from a Continuous Atmospheric CO$_2$ Network in the Rocky Mountains and Southwest

Sherri Heck1,2, Britton Stephens2, Andrew Watt2 and Marnie Carroll3

1University of Colorado, Boulder, CO
2National Center for Atmospheric Research, Boulder, CO
3Diné Environmental Institute, Navajo Nation, Shiprock, NM

In order to improve the understanding of regional carbon fluxes in the Rocky Mountain West, autonomous, inexpensive, and robust CO$_2$ analyzers (AIRCOA) have been deployed at six sites throughout Colorado, Utah and Arizona including one monitor on the Navajo Nation. An analysis of the diurnal cycles in CO$_2$ concentration from several sites will be presented. Sites near major population centers reflect the influence of industrial CO$_2$ sources in afternoon upslope flows, with CO$_2$ concentration increasing and variable in the mid to late afternoon. Other more remote sites show more consistent and decreasing CO$_2$ concentrations throughout the afternoon. These measurements provide insights as to when and under what conditions mountaintop CO$_2$ signals are regionally representative. It is also hoped these measurements will improve our current understanding of the influence of forests on global CO$_2$ levels. Our measurements will be included in future CarbonTracker assimilation runs and other planned model-data fusion efforts. However, questions still exist concerning the ability of these models to accurately represent the various influences on CO$_2$ concentrations in continental boundary layers, and at mountaintop sites in particular. Preliminary analyses of a CarbonTracker and RACCOON (Regional Atmospheric Continuous CO$_2$ Network) diurnal cycle and Mauna Loa, Cold Bay Alaska (NOAA ESRL/GMD) and RACCOON background CO$_2$ concentration comparisons will be presented. We plan to add a 7th AIRCOA observing site in Africa in order to supply essential CO$_2$ measurements and provide science outreach to the local populace. These data are available to the public on the internet in near real-time to support quality control, local science, and larger scale synthesis efforts. (http://raccoon.ucar.edu). Currently Native American students are helping maintain the detector on Navajo Nation (Roof Butte) and creating their own experiments using the available data sets.

Contact information: Marnie Carroll, Diné Environmental Institute, Diné College, P.O. Box 580 Shiprock, NM 87420, USA. Phone: 505-368-3556; Fax: 505-368-3550; Email: mkcarroll@dinecollege.edu